| 研究生: |
鄭立群 Li-Chun Cheng |
|---|---|
| 論文名稱: |
以非熱電漿處理CF4及SF6之效率探討 Removal efficiency of CF4 and SF6 using nonthermal plasma |
| 指導教授: |
張木彬
Moo-Been Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 非熱電漿 、去除效率 、觸媒 、全氟化物 |
| 外文關鍵詞: | interaction, non-thermal plasma, combined plasma catalysis, perfluorinated compounds (PFCs) |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
PFCs為半導體業及光電業製程所需氣體,由於其全球暖化潛勢(GWP)高且生命週期長,致使其排放問題備受關注。燃燒與觸媒轉化為現行PFCs處理技術中最常被使用者,但燃燒法耗能高且有發生工安意外疑慮;而觸媒轉化法則因觸媒毒化限制其應用。非熱電漿破壞已被證實可有效去除NOx、SOx、VOCs和PFCs,最近更發展出電漿和觸媒之整合技術,不論於污染物去除或潔淨能量生成均有更優異之效能,為極具應用前景之新興技術。
本研究利用介電質放電(DBD)和電漿結合銅鋅觸媒(CPC)處理含SF6或CF4之氣流,旨在探討電漿與觸媒之交互作用機制,以及經電漿處理後之觸媒表面變化。此外,許多研究顯示於電漿添加含O和H之氣體將有助於污染物之去除,有鑑於H2O(g)對於電漿處理PFCs的影響尚未釐清,此部份亦為本研究之另一重點。
實驗結果顯示,觸媒經電漿處理後表面粗糙度增加,該結果有助於催化作用之進行,於相同溫度下,其對於SF6之轉化率較未經電漿處理之觸媒為佳。推論其原因為提升表面粗糙度可增加觸媒之活性位置。另一方面,電漿觸媒系統處理SF6時,將於觸媒表面生成硫化物,若將此觸媒再進行催化作用所得之去除效率較新鮮觸媒為差,證實S對於觸媒產生毒化作用。處理SF6之觸媒經鑑定後,表面生成CuS2、ZnSO4、AlF3、MgF2…等化合物;觸媒與CF4反應後生成C和F等化合物。
於本研究中,DBD對於SF6和CF4之轉化效率分別為93%和32%;CPC系統對於SF6轉化率為85%,CF4則為59%。一般而言,於相同比能量密度下,CPC可獲致較佳之轉化率,然CF4卻呈現相反之趨勢。針對該現象本研究進行如下之實驗:利用含浸法使觸媒表面含有10 wt%之S,將其置入CPC系統並通入CF4(作為F之來源)進行放電,尾氣中可監測出SF6,證實觸媒表面之S於CPC系統中可引發逆反應,導致SF6去除效率下降,然該逆反應於CPC系統中之重要性需更多實驗方能證實。
Due to the extremely high global warming potential (GWP). Emissions of perfluorinated compounds (PFCs) have coused attracted more and more public concern due to their high global warming potential (GWP). Since Kyoto Protocol has come into effect, more efforts need to be made to develop abatement technologies with better performance to effectively reduce PFC emissions.
Among the various strategies for PFC removal, destruction is still the most available one. Combustion and catalytic oxidation are commonly used approaches for reducing PFC emissions. However, relatively high fuel cost and potential poisoning of catalyst limit their further application. Non-thermal plasma (NTP) technologies have been successfully demonstrated to be effective in removing a variety of gaseous pollutants, such as NOx, SOx, VOCs, and PFCs. More recently, a promising technology referred to as combined plasma catalysis (CPC) has been developed. The better performance for synthesis gas production and pollutant destruction has been proved in relevant literature. However, the interaction between plasma and catalysis is not fully understood.
This study aims at investigating the difference in the destruction mechanisms as well as the change of catalyst surface properties after plasma treatment of SF6 and CF4 in DBD and CPC, respectively.
The experimental results indicate that the rougher surface of catalyst after plasma treatment could enhance catalysis, which might result from the catalyst activity due to the increment of active sites on the edges and corners. On the other hand, after treating gas stream containing SF6 with CPC, formation of S on the catalyst surface has been confirmed. In terms of catalysis, such phenomenon will cause negative effect because some active sites are covered with S. Moreover, substances such as CuS2, ZnSO4, AlF3 and MgF2 are also identified on the catalyst surface after plasma treatment.
The highest removal efficiencies for SF6 and CF4 obtained with DBD are 93% and 32%, while those achieved with are CPC are 85% and 59%, respectively. It is interesting to find that the removal efficiency for SF6 obtained with DBD is higher that with CPC under the same specific energy density is found in this study. Based on the experimental results of this study, it might stem from the reverse reaction taking place on the surface of catalyst. As for the by-product analysis, the results indicate that SO2F2 and SOF4 are the major products after plasma treatment of SF6.
參考文獻:
英文文獻:
Anderson H. M., Merson J.A., and Light R. W., (1986), "A kinetic model for plasma etching in a SF6/O2 RF discharge", IEEE Trans. Plasma Sci., vol. 14, 156.
Altavilla C., Ciliberto E., (2004), "Decay characterization of glassy pigments: an XPS investigation of smalt paint layers", Dipartimento di Scienze Chimiche, Universita di Catania, Viale Andrea Doria 6, 95125 Catania, Italy., Appl. Phys. A, vol. 79, 309.
Belhaouari J. B., Gonzales J. S., and Gleizes A., (1998), "Simulation of a decaying SF6 arc plasma: hydrodynamics and kinetics coupling study", J. Phys. D, vol. 31, 1219.
Casanovas A. M. and Casanovas J., (2004), “Decomposition of high-pressure (400 kPa) SF6-CO2, SF6-CO, SF6-N2-CO2 and SF6-N2-CO mixtures under negative dc coronas”, J. Phys. D: Appl. Phys. Vol. 38, 1556.
Chen X., Marquez M., Rozak J., Marun C., Luo J., Suib S. L., Hayashi Y. and Matsumoto H., (1998), “Research Note: H2O splitting in tubular plasma reactors”, J. Catalysis, vol. 178, 3727.
Edelson D. and Flamm D. L., (1984), "Computer simulation of a CF4 plasma etching silicon," J. Appl. Phys., vol. 56, 1522.
Fujimi M., Suwa G. and Nagano K., (2001), “PFC emissions reductions in the semiconductor operations division at Deiko Epson Corporation”, ISESH 8th Annual Conference, Kenting, Taiwan.
Herron J. T. and Van Brunt R. J., (1989), "Zonal model for corona discharge-induced oxidation of SF6 in SF6/O2/H2O gas mixtures", Proc. 9th Int. Symp. on Plasma Chemistry, University of Bari, Italy.
Hung M. C., Yang C. L., Wu P. H., Pan S. M. and Huang Y. S., (2001), “Reduction of NF3 usage for optimal AMAT HDP clean recipe”, ISESH 8th Annual Conference, Kenting, Taiwan.
Hitachi S. T. and Hitachi S. K., (1998), “Catalytic decomposition of PFC”, A Partnership for PFC emissions reductions, Technical program present, Texas.
Huang A., Xia G., Spiess F. J., Chen X., Rozak J., Suib S., Takahashi T., Hayashi Y., and Matsumoto H., (2001), “Combination of glow-discharge and arc plasmas for CF4 abatement”, Res. Chem. Intermed., vol. 27, no. 9, 957.
Ibuka S., (1998), Japan’s use of ClF3, A partnership for PFC emissions reductions, Technical Program Present, Texas.
Ji B., Elder D. L., Yang J. H., Basowski P. R. and Karwacki E. J., (2004), “Power dependence of NF3 plasma stability for in situ chamber cleaning”, J. Appl. Phys., vol. 95, no. 8, 4446.
Kuroki Y., Mine J., Okubo M., Yamamoto T. and Saeki N., (2005), “CF4 decomposition using inductively coupled plasma: Effect of power frequency,” IEEE Trans. Ind. Appl., vol 41, no. 1, 215.
Kim Y., Kim K. T., Cha M. S., Song Y. H. and Kim S. J., (2005), “CF4 decompositions using streamer and glow-mode in dielectric barrier discharges,” IEEE Trans. Plasma Sci., vol. 33, no. 3, 1041.
Kurte R., Beyer C., Heise H. M., Klockow D., (2002), ”Application of infrared Spectroscopy to monitoring gas insulated high-voltage equipment:electrode material-dependent SF6 decomposition” , Ana.l Bioana.l Chem., 639.
Kuroki T., Mine J., Okubo M., Yamamoto T. and Saeki N., (2005), “CF4 decomposition using inductively coupled plasma: effect of power frequency”, IEEE Trans. Ind. Appl., vol. 41, no. 1, 215.
Kuroki T., Tanaka S., Okubo M. and Yamamoto T., (2004), “Experimental and numerical investigations for CF4 decomposition using RF low pressure plasma”, IEEE Trans. Ind. Appl., 592.
Levy R. A., Zaitsev V. B., Aryusook K., Ravindranath C., Sigal V., Misra A., Kesari S., Rufin D., Sees J., and Hall L.,(1998), “Investigation of CF3I as an environmental benign dielectric etchant”, J. Materials Research, vol. 13, no. 9, 2643.
Moulder J. F., Stickle W. F., Sobol P. E., Bomben K. D., (1995), “Handbook of X-ray photoelectron spectroscopy”, Physical Electronics, Inc., Minnesota 55344 United States of America.
Novak J. P. and Frechette M. F., (1984), "Transport coefficients of SF6 and SF6-N2 mixtures from revised data", J. Appl. Phys., vol. 55, 107.
Polak L. and Lebedev Y. A., Eds., Plasma Chemistry. Cambridge, UK: Cambridge International Science., 1994.
Pruette L. C., Karecki S. M, and Reif R., (1998), “Evaluation of trifluoroacetic anhydride as an alternative plasma enhanced chemical vapor deposition chamber clean chemistry”, J. Vaccum Sci. Technol. A, vol. 16, no. 3, 1577.
Raghunathan K. And Gullett B. K., (1996), “Role of sulfur in reducing PCDD and PCDF formation”, Environ. Sci. Technol., vol. 30, 1827.
Seeley S. P., Chandler P., Cottle S., and Mawle P., (1997), “Effective PFC gas abatement in a production environment”, Semiconductor Fabtech-10th Edition, BOC Edwards Exhaust Management Systems, Nailsea, UK.
Twigg M. V. and Spencer M. S., (2001), “Deactivation of supported copper metal catalysts for hydrogenation reactions”, Appl. Catalysis A, vol. 212, 161.
Urashima K., Kostov K. G.., Chang J. S., Okayasu Y., Iwaizumi T., Yoshimura K. and Kato T., (2001), “Removal of C2F6 from a semiconductor process flue gas by a ferroelectric packed-bed barrier discharge reactor with an adsorber”, IEEE Trans. Ind. Appl., vol. 37, no. 5, 1456.
Van Brunt R. J. and Herron J. T., (1994), "Plasma chemical model for decomposition of SF6 in a negative glow corona discharge", Physica Scripta, vol. 53, 9.
Worth W. F., (2000), “Reducing PFC emissions: A tech. update”, Future Fab International, Environmental/ Health an Safety, 57.
中文文獻:
吳關佑, (2002),“線管式與填充床式電漿反應器破壞SF6之初步研究,”國立中央大學環工所碩士論文, 中壢市。
游生任, (2000), “以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討”, 中央大學環境工程研究所論文, 中壢市。
李灝銘, (2001) ,“以低溫電漿去除揮發性有機物之研究,” 中央大學環境工程研究所論文,中壢市。
翁澤民, (2004),”觸媒焚化處理氣相甲苯之研究,”國立中山大學環工所碩士論文, 高雄市。
梁煜申,(2003), “鈀觸媒處理焚化廢氣中CO、NO之動力研究,” 國立中興大學環工所碩士論文, 台中市。
何立仁, (1992),“絕緣氣體SF6之介紹”,台灣大電力研究試驗中心, 桃園縣。
FTIR圖譜手冊
網路資料:
行政院原子能委員會核能研究所, ”PFCs排放控制處理技術之對照表,” http://www.iner.gov.tw/news/c-service/change/03.htm (download on 2005/10/5)
USEPA, (2002), “greenhouse gases and global warming potential values,” http://yosemite.epa.gov/oar/globalwarming.nsf/UniqueKeyLookup/SHSU5BUM9T/$File/ghg_gwp.pdf (download on 2005/10/16)
簡慧貞, 台灣環保署,“氣候變化綱要公約相關議題”, http://www.epa.gov.tw/gaiscgi/query_run.exe? (download on 2005/10/20)
台灣環保署, (2004), “93 環境白皮書”, http://www.epa.gov.tw/gaiscgi/nph-uc.exe?ofu=http://www.epa.gov.tw/a/a0300.asp?Ct_Code=03X0000102X0000387&ofn=九十三年(2004) (download on 2005/10/20)