| 研究生: |
林廉凱 Lien-Kai Lin |
|---|---|
| 論文名稱: |
台灣東部縱谷北端海域海底地形及構造之研究 The geologic structure in the offshore area of northern Longitudinal Valley, Taiwan: an approach from marine seismic and multi-beam bathymetric data |
| 指導教授: | 許樹坤 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球科學學系 Department of Earth Sciences |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 174 |
| 中文關鍵詞: | 花蓮海脊 、米崙斷層 、多音束水深 、底拖聲納探測 、多頻道反射震測 |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣東部花東縱谷是歐亞板塊與菲律賓海板塊之縫合帶,而縱谷北部結束端是台灣地震活動最頻繁之地區之一,而米崙斷層是此區域最活躍之活動斷層,其活動特性以左移為主,逆衝為輔。此區在1951年發生過規模7以上的大地震,震央在米崙斷層往北向海延伸之海域。由於過去對於縱谷北端海域的地質構造研究甚少,本研究透過多音束水深、側掃聲納影像、高解析底質剖面及多頻道反射震測調查縱谷北端海域。結果顯示,花蓮海脊之構造可以分成三種型態,表層沉積物受侵蝕產生之線型,淺部構造則是因地層滑移所產生的正斷層,而較深部構造則呈現一正開花突起構造(pop-up structure),且在西側之峽谷的地層有擠壓之特徵。透過震源機制解得知,花蓮海脊深部所受之應力主要為西北-東南向擠壓。因此,縱谷北端海域可能為菲律賓海板塊向下碰撞並擠壓歐亞板塊而隆起之突起構造。淺部之構造為一系列因為深部地層擠壓,而在淺部產生拉張應力所形成的正斷層以及地塹。為了瞭解與陸上構造之關係,將研究結果與陸上的前人研究作討論。從前人研究結果可以得知米崙台地上之地表變形為同震期抬升,間震期沉降之狀態,且帶有順時針旋轉之應力。此區域之地層滑移產生之正斷層的走向由北偏東30度轉為北偏東45度,與米崙台地上為順時針旋轉之應力狀態相吻合。此區域地震來自深部應力擠壓,主要沿突起構造兩側分布,而地層在深部擠壓使得間震期在淺部和地表產生拉張之應力。從底質剖面、震測剖面以及陸上淺層震測剖面結合以上討論,推測米崙斷層確實沿花蓮海脊最西側地形隆起處延伸,至於是否延伸至新城海脊上則需要更多資料來證明。從地震分布以及底質剖面和震測剖面之特徵來看,花蓮海脊南段比北段活躍。在縱谷北端海域有兩種不同型態之斷層,其一為花蓮海脊西側峽谷,也就是米崙斷層延伸之位置,屬於深部應力擠壓之逆衝斷層,若是較大規模的地震會沿此處發生。其次是花蓮海脊上之淺部構造因地層滑移所產生的正斷層,這一系列的正斷層長度與深度均不大,對於地震災害之影響應該較小。
The Longitudinal Valley (LV) is considered as the collisional suture between the Philippine Sea and the Eurasian plates. The northern end of the LV is close to the western end of the Ryukyu Trench. Earthquakes are very frequent in such a complex regime. The Milun Fault is located in the northernmost portion of the LV. However, the offshore portion of the Milun Fault is still enigmatic. Particularly, because of the lack of data the offshore extension of the Milun Fault was rarely addressed. For that, in this study we use new marine seismic reflection, sub-bottom chirp sonar profile, and multi-beam bathymetic data to analyze the seafloor features and tectonic structures of the offshore portion of the Milun Fault. The Milun Fault is a well-known active structure associated with the rupture of the Milun tableland by a M7.3 earthquake in October 1951. From south to north, the geological units include Hualien ridge, the top of Hualien Canyon, and Hsincheng Ridge. Based on the SBP profile and bathymetry, we can observe a creeping linear structure on the sediment and seafloor, and three structure directions and two types structure on the Hualien Ridge. Firstly, we find normal fault for sliding strata in shallow depths. The strike of those normal faults is N30˚E in southern Hualien Ridge and N45˚E in northern Hualien Ridge. Secondly, the Hualen ridge is cut by the strike-slip fault zone in N120˚E. So, the SBP results indicate that the Hualien Ridge is under a clockwise rotation stress. Base on the MCS profile, we could observe the area in the Milun Tableland and Hualien Ridge is a pop-up structure. According to the earthquake focal mechanisms, we could know the region is subject to compressive stress and compression direction is NW-SE. Moreover, the SBP profile and MCS profile indicate that the Milun Fault could extend northeartward to the west side of the Hualien Ridge. However, we need more data to understand whether Milun Fault extends to the Shingcheng Ridge. In summary, the Milun Terraces and Hualien Ridge is a pop-up structure due to the NW-SE regional compressive stress, but we could observe the normal faults and sliding strata due to the extensional stress on the shallow depths. The northern Longitudinal Valley is under a clockwise rotation. The Hualien Ridge is therefore cut by a strike-slip fault zone and is divided into southern Hualien Ridge and northern Hualien Ridge.
Biq, C, Collision, Taiwan-style. Mem. Geol. Soc. China, 4, 91-102, 1981.
Blanchet, R., J.-F. Stephan, C. Rangin, P. Cabezas, D. Baladad, P. Bouysse, P.-P. Chen, P. Chotin, J.-Y. Collot, J. Daniel, J.-M. Drouhot, B. Marsset, B. Pelletier, M. Richard, and M. Tardy, The Western end of the Ryukyu active margin against the Taiwan collision zone: POP 2 cruise results. Presented at the Geodynamic Evolution of Rastern Eurasian Margin International Symposium, 1988.
Brown, L. F., Jr., Fisher, W. L., Seismic stratigraphic interpretation of depositional systems: examples from Brazilian rift and pull apart basins. In: Payton, C. E. (ed.), Seismic Stratigraphy – Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists Memoir 26, 213–248, 1977.
Chang, C.P., Chen, K.S., Chung, L.H., Yen, J.Y., Shih T.S., 2006. Active Fault Propagation in Metropolitan Hualien of Eastern Taiwan: Observed by Radar Interferometry and Field Investigation. International Workshop: Applications of SAR Data in Taiwan, Taoyuan, Taiwan.
Chen, C.-Y., Lee, J.-C., Chen, Y.-G., Chen, R.-F, Campaigned GPS on present-day crustal deformation in northernmost Longitudinal Valley preliminary results, Hualien Taiwan. Terr. Atmos. Ocean. Sci. 25, 337–357, 2014.
Cheng, S.-N., Yu, T.-T., Yeh, Y.T., Chang, Z.-S, Relocation of the 1951
Hualien, Taitung earthquake sequence, conference on weather analysis and
forecasting. Proceedings of Marine Meteorology and Seismology, in
Commemoration of 100 Years of Weather Observation in the Taiwan Area,
pp. 690–699, 1997.
Chi, W.R., Huang, H.M., and Wu J.C,Ages of the Milun and Pinanshan
conglomerates and their bearings on the Quaternary movement of eastern Taiwan. Proc. Geol. Soc. China, 26, 67-75, 1983.
Chiao, L. Y., H. Kao, S. Lallemand, and C. S. Liu, An alternative interpretation for slip vector residuals of subduction interface earthquakes: A case study in the westernmost Ryukyu slab, Tectonophysics, 333, 123 – 134, 2001.
Chou, H.-C., B.-Y. Kuo, S.-H. Hung, L.-Y. Chiao, D. Zhao, and Y.-M. Wu, The Taiwan-Ryukyu subductioncollision complex: Folding of a viscoelastic slab and the double seismic zone,J. Geophys. Res., 111, B04410, 2006.
Church, J. A., J. M. Gregory, p. Huybrechts, M. Kuhn, K. Lambeck, M. T. Nhuan,
D. Qin and P. L. Woodwarth, Changes in Sea Level: Climate Change, The Scientific Masis, pp :639 – 693, 2001.
Deregowski, S. M., F. Rocca, Geometrical optics and wave theory of constant offset sections in layered media. Geophysical Prospecting 29:374-406,1981.
Hunt, D., Tucker, M.E., Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall. Sedimentary Geology 81, 1–9, 1992.
Liu, C.-S., S.-Y. Liu, S.-E. Lallemand, N. Lundberg, and D. Reed, Digital
elevation model offshore Taiwan and its tectonic implication. Terre. Atmos .
Oceanic Sci., 9, 705-738, 1998.
Malavieille, J., Trullenque, G., Consequences of continental subduction on forearc basin and accretionary wedge deformation in SE Taiwan: Insights from analogue modeling, Tectonophysics, 466, 377–394, 2009.
Matsumoto, K., Takanezawa, T. and Ooe, M, Ocean Tide Model Developed by Assimilating TOPEX/POSEIDON Altimetry Data into Hydrodynamical Model: A Global and a Regional Model around Japan, Journal of Oceanography., Vol. 56 , pp. 567-581, 2000.
Rohling, E. J., M. Fenton, F. J. Jorissen, P. Bertrand, G. Ganssen and J. P. Caulet, Magnitudes of Sea-Level Lowstands of the Past 500,000 Years, Nature394: 162 - 165, 1998.
Reineck, H.E., and Singh, I.E., Depositional sedimentary environments (2nd ed.): New York, Springer-Verlag, 549, 1980.
Schock, S.G., LeBlanc, L.R., and Mayer, L.A., Chirp subbottom profiler for quantitative sediment analysis: Geophysics, v. 54, p. 445-450, 1989.
Shyu, J.B.H, Chen C.-F, Wu Y.-M, Seismotectonic characteristics of the northernmost Longitudinal Valley, eastern Taiwan: Structural development of a vanishing suture, Tectonophysics, 295-308, 2016.
Shyu, J.B.H., Sieh, K., Chen, Y.-G., and Liu, C.S, Neotectonic architecture of Taiwan and its implications for future large earthquakes. J. Geophys. Res., 110, B08402, 2005.
Teng, L.-S., Wang, Y., Island arc system of the Coastal Range, eastern, Taiwan. Pro. Geol. Soc. China, 24, 99-112, 1981.
Wu, Y. M., L. Zhao, C. H. Chang, and Y. J. Hsu, Focal mechanism determination in Taiwan by genetic algorithm, Bull. Seism. Soc. Am. 98, 651–661, 2008.
Yen, J.-Y., Lu, C.-H., Chang, C.-P., Hooper, A.J., Chang, Y.-H., Liang, W.-T., Chang, T.-Y., Lin, M.-S., Chen, K.-S, Investigating active deformation in the northern Longitudinal Valley and City of Hualien in eastern Taiwan using persistent scatterer and smallbaseline SAR interferometry. Terr. Atmos. Ocean. Sci. 22, 291–304, 2011.
Yu, S.-B., Chen, H.-Y., Kuo, L.-C, Velocity field of GPS stations in the Taiwan area. Tectonophysics 274, 41–59,1997.
王正松、張智峰、劉玉龍、江嘉豪,花蓮地區地震分布和成因探討。交通部
中央氣象局報告,第439號,第3-1卷,第130-156頁,1992。
何邦碩,花蓮近海海域地球物理初步測勘。海洋彙刊,第12期,39-47頁,
1974。
林明聖、蕭謙麗,米崙礫岩台地上的橫移斷層系統,東台灣研究,3,第13-
30頁,1998。
林啟文、張徽正、盧詩丁、石同生、黃文正,台灣活動斷層概論第二版-五
十萬分之一台灣活動斷層分布圖說明書,經濟部中央地質調查所
特刊第十三號,共122頁,2000。
林朝棨,台灣地形,台灣省文獻委員會,共423頁,1957。
林朝棨,花蓮地方的第四系-台灣之第四紀研究(三),國家長期發展科學委員
會研究報告,共42 頁,1962。
林綉媚,台灣-琉球隱沒與碰撞交界地區的構造特徵。國立台灣大學海洋研究所碩士論文,共61頁,2011。
徐鐵良,台灣東部海岸山脈地質,台灣省地質調查所彙刊第八號,共64頁
,1956。
張舜傑,以淺層反射震測法調查花蓮市地區地下地質構造,國立中央大學
地球物理研究所碩士論文,共109頁,1994。
游明聖,臺東縱谷斷層帶中之橫移斷層特徵。地質,地十四卷,第一期,第
121-147頁,1994。
陳沼輝,利用淺層反射震測評估美崙斷層向南延伸的可能性,國立中正大
學應用地球物理所碩士論文,共64頁,2002。
陳俊甫,台灣東部縱谷北端區域的地震構造特性,國立台灣大學理學院地質
科學所碩士論文,共112頁,2011。
陳嘉俞,台灣花蓮北部地區的新構造與近期地殼變形運動,國立台灣大學
理學院地質科學所碩士論文,共107頁, 2009。
楊貴三,臺灣活斷層的地形學研究-特論活斷層與地形面的關係。私立中國
文化大學地學研究所博士論文,共178頁,1986。
楊蔭清,四十一年來之花蓮地震。花蓮文獻,創刊號,第67-71頁,1953。
廖宏祥,米崙斷層淺層震測研究,國立中正大學地震研究所碩士論文,共
共82 頁,2006。
劉平妹、謝孟龍,台灣東部晚第四紀地質調查及地形演育研究(2/2),經濟
部中央地質調查所,共149頁,2007。
臺灣省氣象所,民國四十年地震報告,共83頁,1951。
鍾令和、謝中敏、石同生、劉彥求、許文靈、謝中敏、吳文綜,活動斷層調查報告—米崙斷層,經濟部中央地質調查所,2004。
謝孟龍、鄧屬予,米崙礫岩的岩相及沈積環境,地質第14卷,第1期,第
201-217頁,1994。