跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊耀渝
Yao-Yu Yang
論文名稱: 成形壓力對鎢酸鋯陶瓷性質之影響
The influence of property of Zirconina Tungstate by shaping pressure
指導教授: 陳志臣
Jyh-Chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 78
中文關鍵詞: 鎢酸鋯ZrW2O8煆燒溫度固態燒結負熱膨脹
外文關鍵詞: Negative thermal expansion, ZrW2O8, Calcination, Solid state sintering
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎢酸鋯為一種特殊的負膨脹材料,其寬廣的負膨脹溫度範圍及高線性度的負膨脹值,可用來負膨脹陶瓷,所以極適用作熱補償之元件基材,使得元件不受溫度影響,可用在廣泛的高精密工業,如光纖光柵之負膨脹元件,或者是利用鎢酸鋯粉末與金屬基材料共同組成等向性之零膨脹係數之複合材料、或是與銅粉結合做成擁有低膨脹與高熱傳係數之電子元件裝置。
    本研究所製作之陶瓷方式乃是採用粉末冶金的方式製作生胚,然後再以固態燒結之方式使生胚成為所要之成品,也就是本文中所指只鎢酸鋯陶瓷,為了改善陶瓷強度,使其更加完善,故針對燒結煆燒、粉末冶金製作流程中粉末之加壓成形之影響加以探討。在探討煆燒溫度對於鎢酸鋯陶瓷密度之影響,其定溫度在於470℃~750℃之間。由實驗結果得知,當陶瓷煆燒溫度為570℃時,為煆燒溫度之最佳條件。在成形壓力面,隨著成形壓力的上升而陶瓷之相對密度也會隨之增加,但其負膨脹性質會隨之降低。經過熱處理之後會使材料標準差降低,使其性質趨向均勻穩定。


    blank

    總目錄 摘要………………………………………………………………Ⅰ 誌謝……………………………………………………………Ⅱ 總目錄…………………………………………………………Ⅲ 表目錄…………………………………………………………Ⅴ 圖目錄……………………………………………………………Ⅵ 第一章 緒論………………………………………………………1 1.1簡介………………………………………………1 1.2文獻回顧…………………………………………2 1.2.1鎢酸鋯之製作………………………………………2 1.2.2鎢酸鋯之應用………………………………………5 1.3鎢酸鋯之結構、負膨脹機制與化學性質……………6 1.4研究動機……………………………………………8 第二章 實驗原理與步驟…………………………………………10 2.1粉體備製………………………………………………10 2.2陶瓷燒結……………………………………………11 2.3熱處理………………………………………………11 2.4性質檢測與分析……………………………………11 2.4.1成分分析……………………………………………11 2.4.2密度量測……………………………………………12 2.4.3膨脹係數檢測………………………………………13 2.4.4彈性係數量測………………………………………13 2.4.5微結構分析…………………………………………14 第三章 實驗結果與討論…………………………………………15 3.1不同煆燒溫度對鎢酸鋯(Zr2WO8)之影響……………15 3.1.1成分分析…………………………………………15 3.1.2陶瓷相對密度與膨脹係數之量測………………16 3.1.3微結構觀察………………………………………17 3.2不同之壓力條件對於鎢酸鋯(Zr2WO8)之影響…………18 3.2.1成分分析…………………………………………18 3.2.2機械性質…………………………………………19 3.2.2.1陶瓷相對密度與微結構觀察……………19 3.2.2.2膨脹係數測試分析………………………20 3.2.2.3 彈性模數測試分析………………………22 3.3 熱處理………………………………………………23 第四章 結論……………………………………………………26 參考文獻…………………………………………………………28

    1. 汪建民, 陶瓷技術手冊, 民國83年.
    2. Luke L.Y. Chang, M. G. Scroger and Bert Phillips, “Condensed Phase Relations in the Systems ZrO2-WO2-WO3 and HfO2-WO2-WO3” Journal of The American Ceramic Society, Vol.50, p211, 1967.
    3. 翁瑞坪, “鎢酸鋯陶瓷之製作”, 國立中央大學機械工程研究所碩士論文, 2000
    4. 黃光志, “燒結條件對鎢酸鋯陶瓷性質影響之研究”, 國立中央大學機械工程研究所碩士論文, 2001
    5. A. W. Sleight, “Compounds That Contract on Heating” Inorg. Chem, Vol.37, p2854, 1998.
    6. J. Graham, A. D. wadsle, J. H. Weymouth and L. S. Williams, “A new Ternary Oxide, ZrW2O8” Journal of The American Ceramic Society, Vol.42, p510, 1959
    7. Charles Martinek and F. A. Hummel, “Linear Thermal Expansion of Three Tungstates” Journal of The American Ceramic Society, Vol.51, p227, 1968.
    8. A. W. Sleight, Mary A. Thundathil and John S. O. Evans, “Negative Thermal Expansion Materials”, U.S. Pat., 5514360, 1996.
    9. Angus P. Wilkinson and Cora Linn Sidthartha Pattanaik “A New Polymorph of ZrW2O8 Prepared Using Nonhydrolyic Sol-Gel Chemistry”, Chem. Mater., Vol.11, p101, 1999.
    10. T. Hashimoto, T. Katsube and Y. Morito, “Observation of two kinds of phase transition of ZrW2O8 by power-compensated differential scanning calorimetry and high-temperature X-ray diffraction” Solid State Communications, Vol.116, p129, 2000.
    11. Geln R. Kowach, ”Growth of single crystals of ZrW2O8” Journal of Crystal Growth, Vol.212, p167, 2000.
    12. J.-C. Chen, G.-C. Huang and C. Hu, J.-P. Weng “Synthesis of negative-thermal-expansion ZrW2O8 substrates” Scripta Materialia, Vol.49, p261, 2003.
    13. C. Verdon and D. C. Dunabd,” High-Temperature Reactivity in the ZrW2O8-Cu System“Scripta Materialia, Vol.36, No.9, p1075, 1997.
    14. Hermann Holzer and David C. Dunand, “Phase Transformation and Thermal Expansion of Cu/ ZrW2O8”, Journal of Materials Research Society, Vol.14, No.3, p780, 1999.
    15. Debra Anne Fleming, David Wilrfred Johnson, Glen Robert Kowach and Paul Joseph Lemaire, “Isotropic Negative Thermal Expansion Ceramics and Process for Making”, U.S. Pat., 0031692, 2001.
    16. Jason Lo and Nicola Maffei, “Isotropic Zero CTE Reinforced Composite Materials”, U.S. Pat., 0215661, 2003.
    17. J. O. S. Evans, T. A. Mary, T. Vogt, M. A. Subramanian and A. W. Sleight, “Negative Thermal Expansion in ZrW2O8 and HfW2O8”, Chem. Mater., Vol.8, p2089, 1996.
    18. J. D. Jorgensen, Z. Hu, S. Teslic, D. N. Argyriou, S. Short, J. O. S. Evans and A. W. Sleight, “Pressure-induced Cubic-to-orthorhombic phase transition in ZrW2O8”, Physical Review B, Vol.60, p14643, 1999.
    19. J. O. S. Evans, Z. Hu, J. D. Jorgensen, D. N. Argyriou, S. Short and A. W. Sleight, “Compressibility, Phase Transitions, and Oxygen Migration in Zirconium Tungstate, ZrW2O8”, Science, Vol.275, p61, 1997.
    20. Alexandra K. A. Pryde, Kenton D. Hammonds, Martin T. Dove, Volker Heine, Julian D. Gale and Michele C. Warren, “Rigid Unit Modes and the Negative Thermal Expansion in ZrW2O8” Phase Transition, Vol.61, p141, 1997.
    21. 黃坤祥, 粉末冶金學, 中華民國粉末冶金協會, 民國90年
    22. Jose Manuel Gallardo-Amores, Ulises Amador, Emilio Moran and Miguel Angel Alario-Franco, “XRD study of ZrW2O8 versus temperature and pressure”, International Journal of Inorganic Materials, Vol.2, p123, 2000.
    23. R. E. Latta, E. C. Duderstadt and R. E. Fryxell, J. Nucl. Mater. ,35〔3〕345-46, 1970.
    24. Bert Phillip, L. L. Y. Chang and M. G. Scroger, Tech. Doc. Rept. No. ML-TDR-64-230, Part Ⅰ, Contract No, AF 33(657)-11235, Tem-Pres Research, Inc., State College, Pa., 1964.
    25. Wulliam D. Callister, JR., Materials Science and Engineering an Introduction, 4th Ed, John Wiley & Sons.
    26. Noriyuki Nakajima, Yasuhisa Yamamura and Toshihide Tsuji, “Synthesis and physical properties of negative thermal expansion materials Zr1-xMxW2O8-y substituted for Zr sites by M ions” Solid State Communications, Vol.128, p193, 2003.

    QR CODE
    :::