跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳鶴元
Ho-yuan Chen
論文名稱: HEVC之高效率編碼單位深度和預測單位模式快速決策演算法
An Efficient Fast CU Depth and PU Mode Decision Algorithm for HEVC
指導教授: 張寶基
Pao-Chi Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 79
中文關鍵詞: 預測單位編碼單位快速演算法高效率視訊編碼
外文關鍵詞: PU, HEVC, fast algorithm, CU
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • High Efficiency Video Coding (HEVC)是一種新一代的視訊壓縮技術,目前正由JCT-VC (ISO/IEC MPEG和 ITU-TVCEG)所開發,其目標是達到比目前主流H.264視訊壓縮標準更高的編碼效率,其適用範圍從Ultra HD (4000x2000或更高)到行動裝置上HD (720p或1080p) 的影片。在眾多新技術中,HEVC提供可調式的編碼單位(coding unit, CU),其預設大小從8x8到64x64不等,取代H.264中固定大小的編碼單位(marcoblock, MB),雖然可以大幅減少“位元率 (bitrate)”,但也相對地大幅增加計算複雜度。
    本論文提供一個CU深度和預測單位(Prediction unit, PU) 模式快速決策演算法,分別藉由參考周圍及相對位置的 CU以及PU模式特性,使用不同演算法分別省下不必要CU的深度和PU的模式來降低編碼端的複雜度。利用本演算法在些許RD效能失真下,平均可以減少61%的編碼時間。


    High Efficiency Video Coding (HEVC) is a new video coding standard, which improves the coding efficiency significantly. To achieve the best performance, HEVC encoder evaluates all possible candidates to determine the best depth of coding unit (CU) and mode of prediction unit (PU). This increases substantial computational complexity that might become an obstacle for practical applications. This paper proposes a fast algorithm for CU and PU to reduce the encoding time of HEVC. By referring neighboring and co-located depth information of CU and motion/texture characteristics of PU, the proposed algorithm skips rarely used depths and modes in certain situations. The experimental results show that our proposed method averagely achieves 57% time saving in high efficiency configuration and 61% in low complexity configuration with negligible rate-distortion loss compared with the reference software.

    摘要 I 致謝 III 目錄 IV 附圖索引 VI 附表索引 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 論文架構 2 第二章 HEVC視訊編碼標準介紹 3 2.1 HEVC視訊編碼介紹 3 2.2 HEVC編碼架構介紹 5 2.2.1 網路提取層 5 2.2.2 視訊編碼層 6 2.2.2.1 編碼單位(Coding unit , CU) 7 2.2.2.2 預測單位(Prediction unit , PU) 8 2.2.2.2 畫面間預測(Inter prediction) 12 2.2.2.3 轉換單位(Transform unit , TU) 21 2.2.2.4 內嵌式迴圈濾波器(In-loop filter) 29 2.3 HEVC的環境設定及視訊樣本 32 2.3.1 環境設定 32 2.3.2 視訊樣本 35 2.3.3 複雜度分析 37 第三章 應用於畫面間模式決策之HEVC快速演算法 39 3.1 快速演算的相關文獻探討 39 3.2 快速CU深度決策演算法 43 3.2.1 CU深度分析及統計 43 3.2.2 針對快速CU深度決策之流程 48 3.2.3 效能分析 50 3.2.3.1 測試環境 50 3.2.3.2 編碼效能比較 51 3.3 快速PU模式決策演算法 56 3.3.1 PU模式分析及統計 56 3.3.2 快速PU模式決策之流程 60 3.3.3 效能分析 62 3.3.3.1 測試環境 62 3.3.3.2 編碼效能比較 62 3.4 移除TU冗餘計算量 67 第四章 實驗結果與討論 68 4.1 實驗環境設置 68 4.2 實驗結果 69 第五章 結論與未來展望 76 參考文獻 78

    [1]Advanced Video Coding, ITU-T Rec. H.264 and ISO/IEC 14496-10 (MPEG-4 AVC), Version 13, Mar. 2011.
    [2]JCT-VC, “High Efficiency Video Coding (HEVC) text specification draft 6,” JCTVC-H1003, 8th JCTVC meeting, San Jose, USA, Feb. 2012.
    [3]JCT-VC, “Comparison of Compression Performance of HEVC Working Draft 4 with AVC High Profile,” JCTVC-G399, 7th JCTVC meeting, Geneva, CH, Nov. 2011.
    [4]Website of MPEG Resource Share Project, Slide of “Talk on Standard Status,” Jan. 2011
    [5]JCT-VC, “Common HM test conditions and software reference configurations,” JCTVC-G1200, 7th JCTVC meeting, Geneva, CH, Nov. 2011.
    [6]Z. Liu, L. Shen, and Z. Zhang, “Block Inter Mode Decision For Fast Encoding of H.264,” IEEE ICASSP, vol. 3, pp. 181-184, May 2004.
    [7]X. Jing and L. Chau, “Fast approach for H.264 inter mode decision,”
    Electronics Letters, vol. 40, no. 17, pp. 1050–1052, Sep. 2004.
    [8]C. Crecos and M. Y. Yang, “Fast Inter Mode Prediction for P Slices in the H264 Video Coding Standard,” IEEE Trans. Broadcasting, vol. 51, no. 2, pp. 256 - 263, June 2005.
    [9]B. G. Kim and S. K. Song, “Enhanced inter-mode decision based on contextual prediction for P-slice in H.264/AVC video coding,” ETRI J., n vol. 28, pp. 425, 2006.
    [10]Z. Liu, L. Shen, and Z. Zhang, “An Efficient Intermode Decision Algorithm Based on Motion Homogeneity for H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 1, pp. 128-132, Jan. 2009.
    [11]L. Shen, Z. Liu, Z. Zhang, and X. Shi, “Fast Inter Mode Decision Using Spatial Property Of Motion Field,” IEEE Trans. Multimedia, vol. 10, no. 6, pp. 1208–1214, 2008.
    [12]B.-G. Kim, “Novel Inter-Mode Decision Algorithm Based on Macroblock (MB) Tracking for the P-Slice in H.264/AVC Video Coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 2, pp. 273–279, Feb. 2008.
    [13]H. Wang, S. Kwong, and C.-W. Kok, “An Efficient Mode Decision Algorithm for H.264/AVC Encoding Optimization,” IEEE Trans. Multimedia, vol. 9, no. 4, pp. 882–888, Apr. 2007.
    [14]H. Zeng, C. Cai, and K.-K. Ma, “Fast Mode Decision for H.264/AVC Based on Macroblock Motion Activity,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 4, pp. 1–10, Apr. 2009
    [15]M.-J. Chen, G.-L. Li, Y.-Y. Chiang, and C.-T. Hsu, “Fast Multiframe Estimation Algorithms by Motion Vector Composition for the MPEG-4/AVC/H.264 Standard,” IEEE Trans. Multimedia, vol. 8, no.3, pp. 478–487, Mar. 2006.
    [16]S.-E. Lim, J.-K. Han, and J.-G. Kim, “An Efficient Scheme for Motion Estimation Using Multireference Frames in H.264/AVC,” IEEE Trans. Multimedia, vol. 8, no. 3, pp. 457–466, Mar. 2006.
    [17]Y.-M. Lee and Y. Lin, “Zero-block mode decision algorithm for H.264/AVC,” IEEE Trans. Image Process., vol. 18, no. 3, pp. 524–533, Mar.2009.
    [18]D. Wu, S. Wu, K. P. Lim, F. Pan, Z. G. Li, X. Lin, “Content based hierarchical fast coding unit decision algorithm for HEVC,” IEEE CMSP, May 2011, vol. 1, pp. 56-59.
    [19]J. Lee and B. Jeon, “Fast mode decision for H.264,” IEEE ICME, June 2004.
    [20]JCT-VC, “Coding tree pruning based CU early termination,” JCTVC-F092, 6th JCT-VC Meeting, Torino, July 2011.
    [21]JCT-VC, “Early termination of CU encoding to reduce HEVC complexity,” JCTVC-F045, 6th JCT-VC Meeting, Torino, July 2011.

    QR CODE
    :::