| 研究生: |
王霈玄 Pei-Syuan Wang |
|---|---|
| 論文名稱: |
基於圖神經網路自監督對比式學習實現數學式檢索 Formula Retrieval based on Self-Supervised Graph Contrastive Learning |
| 指導教授: |
陳弘軒
Hung-Hsuan Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 數學式檢索 、圖神經網路 、對比學習 |
| 外文關鍵詞: | Math Information Retrieval, GNN, Contrastive Learning |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
數學式可以用不同的符號或語句順序表達出同樣意義的式子,因此數學式檢索與一般的文字檢索有不同挑戰。本論文的研究目標是在大量的數學式中檢索與目標數學式相似的數學式。採用自監督圖神經網路對比學習方法,在NTCIR-12資料集上進行數學式檢索任務,並以nDCG及bpref作為評估指標。為了獲取更好的表現,本論文利用Tangent-CFT的嵌入作為圖模型預訓練特徵。當不考慮數學式上下文時,圖模型使用這些預訓練特徵在NTCIR-12資料集上取得了最佳的表現結果。
One mathematical formula can be expressed using different symbols or sequences. Therefore, retrieving mathematical expressions poses unique challenges compared to general text retrieval. This paper aims to retrieve mathematical formulas similar to target formula from a large collection of mathematical formulas. We adopt graph neural with self-supervised contrastive learning approached to tackle the task. We utilize the pre-trained embedding learned from Tangent-CFT as the features for the nodes and edges in graph. We evaluate the performance using the NTCIR-12 dataset with nDCG and bpref as evaluation metric. The graph neural networks using these pretraining embeddings perform best on the NTCIR-12 dataset.
[1] NTCIR-12 MathIR Task Overview, NTCIR, 2016.
[2] Mansouri, B., Rohatgi, S., Oard, D. W., Wu, J., Giles, C. L., Zanibbi, R., “TangentCFT: An Embedding Model for Mathematical Formulas,” ACM SIGIR International Conference on Theory of Information Retrieval, 2019.
[3] P. Sojka and M. Líška, “The art of mathematics retrieval,” Sep. 2011, pp. 57–60.
doi: 10.1145/2034691.2034703.
[4] A. Thanda, A. Agarwal, K. Singla, A. Prakash, and A. Gupta, “A document retrieval system for math queries,” in NTCIR Conference on Evaluation of Information Access Technologies, 2016.
[5] L. Gao, Z. Jiang, Y. Yin, K. Yuan, Z. Yan, and Z. Tang, Preliminary exploration
of formula embedding for mathematical information retrieval: Can mathematical
formulae be embedded like a natural language? 2017. arXiv: 1707.05154 [cs.IR].
[6] Y. Hijikata, H. Hashimoto, and S. Nishida, “An investigation of index formats for
the search of mathml objects,” in 2007 IEEE/WIC/ACM International Conferences
on Web Intelligence and Intelligent Agent Technology - Workshops, 2007, pp. 244–
248. doi: 10.1109/WI-IATW.2007.121.
[7] W. Zhong and H. Fang, “Opmes: A similarity search engine for mathematical content,” in Advances in Information Retrieval, N. Ferro, F. Crestani, M.-F. Moens,
et al., Eds., Cham: Springer International Publishing, 2016.
[8] K. Yokoi and A. Aizawa, “An approach to similarity search for mathematical expressions using mathml,” Towards a Digital Mathematics Library. Grand Bend,
Ontario, Canada, July 8-9th, 2009, pp. 27–35, 2009.
[9] G. Y. Kristianto, G. Topic, and A. Aizawa, “Mcat math retrieval system for ntcir-12
mathir task,” in NTCIR Conference on Evaluation of Information Access Technologies, 2016.
[10] W. Zhong and R. Zanibbi, “Structural similarity search for formulas using leaf-root
paths in operator subtrees,” in Advances in Information Retrieval, L. Azzopardi,
B. Stein, N. Fuhr, P. Mayr, C. Hauff, and D. Hiemstra, Eds., Cham: Springer
International Publishing, 2019, pp. 116–129.
[11] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with
subword information,” Transactions of the association for computational linguistics,
vol. 5, pp. 135–146, 2017.
[12] K. Davila and R. Zanibbi, “Layout and semantics: Combining representations for
mathematical formula search,” in Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval, 2017, pp. 1165–
1168.
[13] Sun, Fan-Yun and Hoffman, Jordan and Verma, Vikas and Tang, Jian, “InfoGraph:
Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization,” in International Conference on Learning Representations, 2019.
[14] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph contrastive learning with augmentations,” in Advances in Neural Information Processing Systems, H.
Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds., vol. 33, Curran
Associates, Inc., 2020, pp. 5812–5823. [Online]. Available: https://proceedings.
neurips.cc/paper/2020/file/3fe230348e9a12c13120749e3f9fa4cd-Paper.
pdf.
[15] S. Thakoor, C. Tallec, M. G. Azar, et al., Large-scale representation learning on
graphs via bootstrapping, 2021. arXiv: 2102.06514 [cs.LG].
[16] C. Buckley and E. M. Voorhees, “Retrieval evaluation with incomplete information,” in Proceedings of the 27th annual international ACM SIGIR conference on
Research and development in information retrieval, 2004, pp. 25–32.
[17] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based optimization
for general algorithm configuration,” in Learning and Intelligent Optimization: 5th
International Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected
Papers 5, Springer, 2011, pp. 507–523.
[18] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?” arXiv preprint arXiv:1810.00826, 2018.