| 研究生: |
廖偉博 Wei-Bo Liao |
|---|---|
| 論文名稱: |
利用介電係數趨近零材料設計層狀寬帶超穎吸收膜 Using epsilon-near-zero material to design lamellar broadband metamaterial absorber |
| 指導教授: |
李正中
Cheng-Chung Lee 郭倩丞 Chien-Cheng Kuo |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 吸收膜 、介電係數趨近零 、表面電漿 |
| 外文關鍵詞: | absorption film, epsilon-near-zero, surface plasma |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統的超穎材料使用蝕刻技術製作複雜週期結構,本研究提出無蝕刻
之層狀寬帶超穎吸收膜,利用epsilon-near-zero(ENZ)產生強吸收,並使用導納法調整ENZ 材料與介電質材料之厚度,與入射介質之阻抗匹配,達到近乎完美吸收,模擬設計在500 奈米至1300 奈米平均吸收率高達99.6%,實際樣品平均吸收率仍有98.5%。此外,本研究之超穎吸收膜對入射角不敏感,模擬在60 度入射角平均吸收率仍有接近94%。
未鍍膜的布經過模擬的太陽光照射15 分鐘,溫度上升至33 度,鍍在
布上的寬帶超穎吸收膜,溫度高達44 度,有效率地將電磁波轉換為熱,若將寬帶超穎吸收膜應用在衣物上,可以幫助人們在寒冷的天氣,藉由吸收太陽光而保持溫暖。
Typical metamaterials are composed of periodically arranged pattern, a dielectric spacer layer and a thick metal layer. To realize the periodically arranged pattern, lithography or etching process is required. In this study, a broadband metamaterial absorber which based on epsilon-near-zero (ENZ) mode to achieve near perfect absorber was deposited using magnetron sputtering system without any complex fabrication process. The thickness of ENZ layers and dielectric layers optimized according to admittance-matching method. The simulation and fabricated average absorption from 500 nm to 1300 nm were 99.6% and 98.5%, respectively. Besides, the absorber is angular insensitive up to 60°.
The temperature of the absorber which deposited on cloth increase from room temperature to 44℃, 11℃ higher than the uncoated cloth which is 33℃, after exposed to simulated sunlight for 15 minutes. Thus the absorber without any structural pattern discussed in this paper might have many applications, the simplest one is to help people keep warm in the cold weather.
1. Azad, A.K., et al., Metasurface broadband solar absorber. Scientific reports, 2016. 6: p. 20347.
2. Liu, D., et al., Ultrathin planar broadband absorber through effective medium design. Nano Research, 2016. 9(8): p. 2354-2363.
3. Chen, H.-H., et al., Narrow bandwidth and highly polarized ratio infrared thermal emitter. Applied Physics Letters, 2010. 97(16): p. 163112.
4. Liu, N., et al., Infrared perfect absorber and its application as plasmonic sensor. Nano letters, 2010. 10(7): p. 2342-2348.
5. Li, Y. and B.M. Assouar, Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Applied Physics Letters, 2016. 108(6): p. 063502.
6. Maystre, D. and R. Petit, Brewster incidence for metallic gratings. Optics Communications, 1976. 17(2): p. 196-200.
7. Hutley, M. and D. Maystre, The total absorption of light by a diffraction grating. Optics communications, 1976. 19(3): p. 431-436.
8. Loewen, E. and M. Neviere, Dielectric coated gratings: a curious property. Applied optics, 1977. 16(11): p. 3009-3011.
9. Maystre, D., M. Neviere, and P. Vincent, On a general theory of anomalies and energy absorption by diffraction gratings and their relation with surface waves. Optica Acta: International Journal of Optics, 1978. 25(9): p. 905-915.
10. Lee, B.J. and Z. Zhang, Design and fabrication of planar multilayer structures with coherent thermal emission characteristics. Journal of Applied Physics, 2006. 100(6): p. 063529.
11. Driessen, E. and M. De Dood, The perfect absorber. Applied Physics Letters, 2009. 94(17): p. 171109.
12. Landy, N.I., et al., Perfect metamaterial absorber. Physical review letters, 2008. 100(20): p. 207402.
13. Gao, H., et al., Ultraviolet to near infrared titanium nitride broadband plasmonic absorber. Optical Materials, 2019. 97: p. 109377.
14. Zhou, J., et al., Perfect ultraviolet absorption in graphene using the magnetic resonance of an all-dielectric nanostructure. Optics express, 2018. 26(14): p. 18155-18163.
15. Ma, J., et al., High-efficiency and ultrabroadband flexible absorbers based on transversely symmetrical multi-layer structures. AIP Advances, 2019. 9(11): p. 115007.
16. Li, W., et al., Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Advanced Materials, 2014. 26(47): p. 7959-7965.
17. Yoon, J., et al., Broadband epsilon-near-zero perfect absorption in the near-infrared. Scientific reports, 2015. 5: p. 12788.
18. Gao, H., et al., Refractory ultra-broadband perfect absorber from visible to near-infrared. Nanomaterials, 2018. 8(12): p. 1038.
19. Li, S., et al., Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation. Physical Review B, 2015. 91(22): p. 220301.
20. Bao, S., et al., Broadband metamaterial absorber based on dendritic structure. Acta Physica Sinica, 2010. 59(5): p. 3187-3191.
21. Cheng, Y., Y. Nie, and R. Gong, A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films. Optics & Laser Technology, 2013. 48: p. 415-421.
22. Wang, H. and L. Wang, Perfect selective metamaterial solar absorbers. Optics express, 2013. 21(106): p. A1078-A1093.
23. Sai, H., et al., Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion. Solar energy materials and solar cells, 2003. 79(1): p. 35-49.
24. Ahmad, N., et al. Enhanced broadband optical absorption from nanostructured nickel thin-films for solar energy applications. in 2012 14th International Conference on Transparent Optical Networks (ICTON). 2012. IEEE.
25. Peng, K.Q. and S.T. Lee, Silicon nanowires for photovoltaic solar energy conversion. Advanced Materials, 2011. 23(2): p. 198-215.
26. Wu, C., et al., Near-unity below-band-gap absorption by microstructured silicon. Applied Physics Letters, 2001. 78(13): p. 1850-1852.
27. Wu, C., et al., Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. Journal of Optics, 2012. 14(2): p. 024005.
28. Li, Y., et al., Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks. Optics express, 2019. 27(8): p. 11809-11818.
29. Cui, Y., et al., Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano letters, 2012. 12(3): p. 1443-1447.
30. Ji, D., et al., Broadband absorption engineering of hyperbolic metafilm patterns. Scientific reports, 2014. 4: p. 4498.
31. Ma, W., Y. Wen, and X. Yu, Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators. Optics express, 2013. 21(25): p. 30724-30730.
32. Liu, Y., et al., Ultra-thin broadband metamaterial absorber. Applied Physics A, 2012. 108(1): p. 19-24.
33. Hu, C., et al., Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies. Optics express, 2009. 17(19): p. 16745-16749.
34. Zhang, C., et al., Broadband metamaterial for optical transparency and microwave absorption. Applied Physics Letters, 2017. 110(14): p. 143511.
35. Zhang, Y., et al., Graphene induced tunable and polarization-insensitive broadband metamaterial absorber. Optics Communications, 2017. 382: p. 281-287.
36. Wen, D.-e., et al., Broadband metamaterial absorber based on a multi-layer structure. Physica Scripta, 2013. 88(1): p. 015402.
37. Xiong, H., et al., An ultrathin and broadband metamaterial absorber using multi-layer structures. Journal of Applied Physics, 2013. 114(6): p. 064109.
38. Grant, J., et al., Polarization insensitive, broadband terahertz metamaterial absorber. Optics letters, 2011. 36(17): p. 3476-3478.
39. He, S. and T. Chen, Broadband THz absorbers with graphene-based anisotropic metamaterial films. IEEE transactions on terahertz science and technology, 2013. 3(6): p. 757-763.
40. Zhong, Y.K., et al., Fully planarized perfect metamaterial absorbers with no photonic nanostructures. IEEE Photonics Journal, 2015. 8(1): p. 1-9.
41. Jen, Y.-J., et al., Design and deposition of a metal-like and admittance-matching metamaterial as an ultra-thin perfect absorber. Scientific reports, 2017. 7(1): p. 1-10.
42. Hu, E.-T., et al., Multilayered metal-dielectric film structure for highly efficient solar selective absorption. Materials Research Express, 2018. 5(6): p. 066428.
43. Deng, H., et al., Broadband perfect absorber based on one ultrathin layer of refractory metal. Optics letters, 2015. 40(11): p. 2592-2595.
44. Ghobadi, A., et al., Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth. Photonics Research, 2018. 6(3): p. 168-176.
45. Mirshafieyan, S.S. and J. Guo, Silicon colors: spectral selective perfect light absorption in single layer silicon films on aluminum surface and its thermal tunability. Optics express, 2014. 22(25): p. 31545-31554.
46. Kats, M.A., et al., Nanometre optical coatings based on strong interference effects in highly absorbing media. Nature materials, 2013. 12(1): p. 20-24.
47. Ghobadi, A., et al., Strong light–matter interaction in lithography-free planar metamaterial perfect absorbers. ACS Photonics, 2018. 5(11): p. 4203-4221.
48. Yang, C., et al., Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption. Acs Photonics, 2016. 3(4): p. 590-596.
49. Naik, G.V., V.M. Shalaev, and A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Advanced Materials, 2013. 25(24): p. 3264-3294.
50. Liu, J., et al., Optical absorption of hyperbolic metamaterial with stochastic surfaces. Optics express, 2014. 22(8): p. 8893-8901.
51. Zhu, C., et al., SiO2/bi-layer GZO/Ag structures for near-infrared broadband wide-angle perfect absorption. Journal of Physics D: Applied Physics, 2016. 49(42): p. 425106.
52. Dang, P.T., et al., A designed broadband absorber based on ENZ mode incorporating plasmonic metasurfaces. Micromachines, 2019. 10(10): p. 673.
53. Biswas, A., et al., Large broadband visible to infrared plasmonic absorption from Ag nanoparticles with a fractal structure embedded in a Teflon AF® matrix. Applied physics letters, 2006. 88(1): p. 013103.
54. Hedayati, M.K., et al., Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Advanced Materials, 2011. 23(45): p. 5410-5414.
55. Hedayati, M.K., F. Faupel, and M. Elbahri, Tunable broadband plasmonic perfect absorber at visible frequency. Applied Physics A, 2012. 109(4): p. 769-773.
56. Tao, L., et al. Broadband Epsilon Near Zero Conducting Oxide Absorbers Fabricated by Atomic Layer Deposition. in 2018 Conference on Lasers and Electro-Optics (CLEO). 2018. IEEE.
57. Meissner, D., Spectroscopy, Solar Cells, Sensors…. Semiconductors for solar cells. By HJ Möller, Artech House, Boston 1993, XI, 343 pp., hardcover,£ 70, ISBN 0‐89006‐574‐8. Advanced Materials, 1994. 6(4): p. 334-334.
58. 李正中, 薄膜光學與鍍膜技術. 2019, 第九版, 藝軒圖書出版社.
59. Rayleigh, L., On the dynamical theory of gratings. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1907. 79(532): p. 399-416.
60. Fano, U., The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). JOSA, 1941. 31(3): p. 213-222.
61. 邱國斌 and 蔡定平, 金屬表面電漿簡介. 物理雙月刊, 2006. 28: p. 472-485.
62. Zhu, J., et al., Near unity ultraviolet absorption in graphene without patterning. Applied Physics Letters, 2018. 112(15): p. 153106.
63. Rensberg, J., et al., Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers. Physical Review Applied, 2017. 8(1): p. 014009.
64. Boltasseva, A. and H.A. Atwater, Low-loss plasmonic metamaterials. Science, 2011. 331(6015): p. 290-291.
65. Anopchenko, A., et al., Field-effect tunable and broadband epsilon-near-zero perfect absorbers with deep subwavelength thickness. ACS Photonics, 2018. 5(7): p. 2631-2637.
66. Campione, S., I. Brener, and F. Marquier, Theory of epsilon-near-zero modes in ultrathin films. Physical Review B, 2015. 91(12): p. 121408.
67. Smith, D.R., J.B. Pendry, and M.C. Wiltshire, Metamaterials and negative refractive index. Science, 2004. 305(5685): p. 788-792.
68. Seddon, N. and T. Bearpark, Observation of the inverse Doppler effect. Science, 2003. 302(5650): p. 1537-1540.
69. Zheng, H., et al., Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance. Optics express, 2012. 20(21): p. 24002-24009.
70. Badsha, M.A., Y.C. Jun, and C.K. Hwangbo, Admittance matching analysis of perfect absorption in unpatterned thin films. Optics Communications, 2014. 332: p. 206-213.
71. Liu, Z., et al., Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. ACS Applied Materials & Interfaces, 2015. 7(8): p. 4962-4968.