| 研究生: |
莊清焱 Ching-Yen Chuang |
|---|---|
| 論文名稱: |
歸納邏輯程式設計應用於證券交易相對關係規則之挖掘 Predicate-based relational mining for stock trading |
| 指導教授: |
陳稼興
Jiah-Shing Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理學系 Department of Information Management |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 相對關係 、歸納邏輯程式設計 、機率 、FOIL 、資料挖掘 |
| 外文關鍵詞: | data mining, Inductive Logic Programming, FOIL, relative comparison, probability |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究運用Muggleton 於1992年提出歸納邏輯程式設計,嘗試解決關於資料挖掘的文獻常使用數值的「絕對」比較,來處理數值型資料方面的問題,事實上使用數值的「相對」比較可以表達的情況會比使用「絕對」比較來得完整。由此可知,如果只使用「絕對」關係挖掘資料,由於背景知識不足的關係,導致學習情況其實有改善的空間。
本研究將原來的數值比較轉換成邏輯分析,增加「相對」比較的概念,將數值的絕對比較和相對比較當作預測的背景知識,並搭配intensional概念簡化邏輯的描述,設法解決在數值比較的邏輯判斷,會有相同背景知識中item數目過多的問題。
另外,本研究改良Quinlan於1990年提出歸納邏輯程式設計的FOIL演算法,由於證券市場屬於非結構性的模型,而使用機率性邏輯推理的方式,增加演算法的彈性,使其適合運用在類似證券市場這種沒有清楚定義資料間存在的相關性之模型上,而提出Inductive Probabilistic Programming的概念。
本研究以學習近日內股價漲跌幅所產生的交易訊號為例,驗證學習正確率及精確率提升的程度,實驗結果證實當加入「相對」比較關係的概念,其學習正確率及精確率會顯著優於只使用「絕對」比較關係來挖掘資料的情況。
The present research uses the framework of Inductive Logic Programming which is proposed by Muggleton in 1992, and tries to solve the problems which often use the absolute value comparison to handle the numeric data in the previous researches relate to Data Mining. Actually, the situations which use the relative value comparison to express are more complete than to use the absolute value comparison. Due to absolute comparison causes the insufficient background knowledge, we can improve the learning effect of data mining by other suitable techniques.
The present research is to transform the original value comparison into logic analysis and increase the concept of relative comparison. It takes the absolute value comparison and relative value comparison as background knowledge of predicate, and collocates the intensional concept to simply the logic description in order to solve that there are many items which represent the same background knowledge in the logic decision of value comparison.
Besides, the present research refines the FOIL algorithm of Inductive Logic Programming which is proposed by Quinlan in 1990. Because the stock market is a non-structural model, it has to use probabilistic logic inference to increase the flexibility of algorithm, and let this algorithm fit to apply in the similar model which doesn''t define the existent association between data clearly like stock market, so the present research proposes the concept of Inductive Probabilistic Programming.
The present research takes stock market as example to learn the trading signals which are caused by the stock price raising or falling several days ago, and verify how much the learning accuracy and precision are improved. The results of experiment confirm when we add the concept of relative comparison, its learning accuracy and precision are obviously better than the situations which only use the absolute comparison.
[1] 杜金龍,《技術指標在台灣股市應用的訣竅》,台北:財訊出版社,2002。
[2] 陳共、周升業、吳曉求,《證券投資分析》,台北:五南圖書出版公司,2001。
[3] 曾思博,類神經網路於股價預測與資金配置之應用,第十屆國際資訊管理學術研討會論文集,1999。
[4] Achelis, Steven B., Technical Analysis from A to Z, McGraw-Hill, New York, 2000.
[5] Bauer, Richard J. and Julie Dahlquist, Technical Market Indicators, John Wiley & Sons, 1999.
[6] Bergadano, Francesco and Daniele Gunetti, Inductive Logic Programming: From Machine Learning to Software Engineering, The MIT Press, 1995.
[7] Chi, Sheng-Chi, Hung-Pin Chen, Chun-Hao Cheng, “A forecasting approach for stock index future using grey theory and neural network,” Neural Networks, Vol. 6, 1999, pp. 3850-3855.
[8] De Raedt, Luc and Kristian Kersting, “Probabilistic Inductive Logic Programming,” Albert-Ludwigs-University, Germany, 2004.
[9] Fama, Eugene F., “Efficient Capital Market: A Review of Theory and Empirical Work,” Journal of Finance, Vol. 25, 1970, pp. 383-417.
[10] Fayyad, Usama M., Gregory Piatetsky-Shapiro, Padhraic Smyth and Ramasamy Uthurusamy, Advances in Knowledge Discovery and Data Mining, The MIT Press, 1995.
[11] Jobman, Darrell R., The Handbook of Technical Analysis, Irwin, New York, 1995.
[12] Keynes, John Maynard, The General Theory of Employment, Interest, and Money, Harcourt, New York, 1936.
[13] Lavrac, Nada and Saso Dzeroski, Inductive Logic Programming Techniques and Applications, Ellis Horwood, New York, 1994.
[14] Lavrac, Nada and Peter A. Flach, “An Extended Transformation Approach to Inductive Logic Programming,” ACM Transactions on Computational Logic, 2(4), October 2001, pp. 458-494.
[15] Muggleton, Stephen, “Inductive Logic Programming: Issues, results and the challenge of Learning Language in Logic,” Artificial Intelligence, Vol. 114, 1999, pp. 283-296.
[16] Muggleton, Stephen, “Inductive Logic Programming: derivations, successes and shortcomings,” ACM SIGART Bulletin, 5(1), January 1994, pp. 5-11.
[17] Muggleton, Stephen, “Bayesian Inductive Logic Programming,” Proceedings of the Seventh Annual ACM Conference on Computational Learning Theory, 1994.
[18] Muggleton, Stephen, Inductive Logic Programming, Academic Press, 1992.
[19] Muggleton, Stephen, “Inductive logic programming,” New Generation Computing, 8(4) 1991, pp. 295-318.
[20] Muggleton, Stephen and Ivan Bratko, “Applications of Inductive Logic Programming,” Communications of the ACM, 38(11), November 1995, pp. 65-70.
[21] Muggleton, Stephen and Luc De Raedt, “Inductive logic programming: Theory and methods,” Journal of Logic Programming, Vol. 19/20, 1994, pp. 629-679.
[22] Muggleton, Stephen and Cao Feng, “Efficient induction of logic programs,” Proceedings of the First Conference on Algorithmic Learning Theory, 1990, pp. 368-381.
[23] Nienhuys-Cheng, Shan-Hwei and Ronald de Wolf, Foundations of Inductive Logic Programming, Springer-Verlag, New York, 1997.
[24] Quinlan, J. Ross, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Francisco, 1993.
[25] Quinlan, J. Ross, “Learning logical definitions from relations,” Machine Learning, Vol. 5, 1990, pp. 239-266.
[26] Quinlan, J. Ross, Decision Trees and Multi-Valued Attributes, Oxford University Press, New York, 1988.
[27] Quinlan, J. Ross and R. Mike Cameron-Jones, “FOIL: A Midterm Report,” Basser Department Computer Science University of Sydney, Australia, 2006.
[28] Ross, Stephen A., Randolph W. Westerfield and Bradford D. Jordan, Fundamentals of Corporate Finance, McGraw-Hill, 2001.
[29] Shapiro, Ehud Y., Algorithmic Program Debugging, MIT Press, Cambridge, 1983.
[30] Thawornwong, Suraphan, David Enke and Cihan H. Dagli, “Neural Network as a Decision Marker for Stock Trading: A Technical Analysis Approach,” Journal of Smart Engineering Systems Design, Vol. 5, 2003, pp. 1-13.