| 研究生: |
吳明鴻 Ming-Hung Wu |
|---|---|
| 論文名稱: |
高分子薄膜延伸混合基材薄膜之模型建構及氣體輸送計算與探討 Model Construction and Gas Transport Simulations on Polymeric Membranes with Extension to Mixed Matrix Membranes |
| 指導教授: |
張博凱
Bor Kae Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | Matrimid® 5218 、NH2-MIL-53 、混和基質薄膜 、分子動力學 、密度泛函理論 、氣體輸送機制 |
| 外文關鍵詞: | Matrimid® 5218, NH2-MIL-53, mixed matrixed membranes, molecular dynamics, density functional theory, gas transport mechanism |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來溫室氣體的排放,如二氧化碳導致溫室效應愈加嚴重,也使得地球的環境遭受破壞,所以如何抑制溫室氣體的排放逐漸成為全球關注的議題。一種新型的材料—混和基質薄膜(Mixed Matrixed Membranes, MMMs),以高分子薄膜為基底添加有機金屬框架材料(Metal Organic Frameworks, MOF)為填充劑,結合了前者對特定氣體的吸附能力以及後者對特定氣體的選擇能力。此研究使用Matrimid® 5218為高分子薄膜基底,因為它具有高的玻璃轉移溫度,有助於後端加工;使用NH2-MIL-53為填充劑,因為它具有明顯的呼吸現象,有助於氣體吸附的表現。
本研究使用分子動力學模擬(Molecular Dynamics, MD)建構Matrimid® 5218模型和混和基質薄膜模型以及密度泛函理論(Density functional theory, DFT)建構NH2-MIL-53模型並且搭配蒙地卡羅法(Monte Carlo simulations)和均方根位移(Mean square displacement)討論純高分子薄膜、NH2-MIL-53以及混和基質薄膜的氣體輸送機制。
在純高分子薄膜部分,我們將Matrimid® 5218分成3個不同的系統做討論,分別是長鏈系統、中鏈系統以及短鏈系統,並且比較兩種分子動力學模擬的手法,分別是NPT-NVT步驟以及31步驟,結果顯示,長鏈的系統充分展現高分子扭轉的特性,隨著鏈長縮短,此扭轉特性會逐漸消失,導致自由體積(Free Volume)減少,氣體吸附表現降低,而在氣體擴散方面,由於自由體積(Free Volume)的減少,增加氣體與高分子鏈之間碰撞的機會,使氣體具有更多的能量可以發生擴散行為,導致氣體擴散表現上升,並且綜合以上氣體輸送的表現,我們認為使用31步驟所建構的模型較接近實驗的結果。
在NH2-MIL-53部分,我們建構大孔(Large Pore)以及窄孔(Narrow Pore)的模型,結果顯示,大孔吸附的氣體總量較窄孔高,而其最主要的影響因素就是孔洞的大小的變化而產生的呼吸現象。此外,我們還有建構用來當作填充劑的團簇(Cluster)模型,並且使用兩種電荷分配方式。
在混和基質薄膜的部分,我們摻雜不同重量百分濃度的團簇來建構混和基質薄膜,結果顯示,氣體分子無法有效的吸附在團簇的孔洞位置,使得氣體吸附表現不如預期,我們推測是因為團簇的電荷分布無法讓團簇保持原本NH2-MIL-53的特性。在本研究中,我們曾經使用NH2-MIL-53的電荷分布直接應用在團簇來建構混和基質薄膜,雖然會導致整體團簇無法維持電中性,卻可以觀察到添加填充劑後使得氣體吸附能力增強。
儘管本研究的數據與實驗的數據不太吻合,但我們還是可以從中觀察到一定的趨勢,並且系統性的探討薄膜對於氣體吸附之行為與機制。
In recent years, carbon dioxide is one of the main greenhouse gases which lead to serious damage to our environment. Therefore, how to capture CO2 has become a global issue. A new type of material, mixed matrixed membranes (MMMs), which is composed of metal-organic framework (MOF) as filler embedded in a polymeric matrix and it can combine the advantages of both components. In this study, Matrimid® 5218 is used as polymeric matrix becaused of its high glass transition temperature, and NH2-MIL-53 is used as filler because of its significant breathing behavior.
In this work, molecular dynamics (MD) and density functional theory (DFT) are applied to construct the pure Matrimid models and MMMs models, and NH2-MIL-53 models, respectively. Additionally, Monte Carlo (MC) simulations and mean square displacement (MSD) are used to analysis the gas transport mechanism.
The pure Matrimid models are divided into three different systems for discussion, which are long, medium, and short chain system. Each system would adopt two different MD procedures to construct the models, which are NPT-NVT loop procedure and 31 MD step procedure. The results show that the long chain system fully exhibits the characteristics of polymer torsion, and as the chain length decrease, this characteristic will gradually disappear, resulting in decrease of free volume, further decreasing the gases adsorption ability. For gases diffusion, due to the gradual reduction of the free volume, the collision between the gases and polymer chain increase, resulting in an increase in gases diffusion. Furthermore, we found that the pure membrane adopting 31 MD step procedure are more reasonable and more in line with the experimental value, and is a more efficient MD method in this study.
The narrow pore (NP) and large pore (LP) types of NH2-MIL-53 models are constructed. The results sohw that the amount of gases that can be adsorbed by the LP is higher than that of NP, and the most important influencing factor is the breathing behavior caused by the change of the pore size. Besides, the cluster models of NH2-MIL-53 adoping two different kinds of charge assignment are constructed as the filler to embedded into polymeric matrix.
The MMMs models are constructed within different weight loading of NH2-MIL-53. The results show that the gas molecules cannot effectively adsorb in the pores of the clusters, so the gas adsorption performance is not as expected. We speculate that the charge distribution of the clusters makes it cannot retain the original characteristics of NH2-MIL-53. However, we have tried to use the original charge distribution from NH2-MIL-53 to apply on the cluster models. The results show that although the cluster model cannot maintain the electrical neutrality, it can enhance the sorption ability inside the MMMs.
Despite the results in this study are not in agreement with the experiment, we can still observe certain trends and systematically discuss the mechanism of film adsorption on gases.
1. Baker, R.W., Membrane technology and applications. 2012: John Wiley & Sons.
2. Li, N.N., A.G. Fane, W.W. Ho, and T. Matsuura, Advanced membrane technology and applications. 2011: John Wiley & Sons.
3. Goh, P., A. Ismail, S. Sanip, B. Ng, and M. Aziz, Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Separation and Purification Technology, 2011. 81(3): p. 243-264.
4. Zhang, Y., X. Feng, S. Yuan, J. Zhou, and B. Wang, Challenges and recent advances in MOF–polymer composite membranes for gas separation. Inorganic Chemistry Frontiers, 2016. 3(7): p. 896-909.
5. Cheng, S.Z., Z. Wu, E. Mark, and H.S. LC, A high-performance aromatic polyimide fibre: 1. Structure, properties and mechanical-history dependence. Polymer, 1991. 32(10): p. 1803-1810.
6. Zhang, Y., K. Balkus Jr, I. Musselman, and J. Ferraris. Novel mixed matrix membranes based on mesoporous molecular sieves and hybrid frameworks. in Proceedings of the 16th Annual Meeting of North American Membrane Society (NAMS 2005). 2005.
7. Bolinois, L., T. Kundu, X. Wang, Y. Wang, Z. Hu, K. Koh, and D. Zhao, Breathing-induced new phase transition in an MIL-53 (Al)–NH2 metal–organic framework under high methane pressures. Chemical Communications, 2017. 53(58): p. 8118-8121.
8. Biswas, S., T. Ahnfeldt, and N. Stock, New functionalized flexible Al-MIL-53-X (X=-Cl,-Br,-CH3,-NO2,-(OH)2) solids: Syntheses, characterization, sorption, and breathing behavior. Inorganic chemistry, 2011. 50(19): p. 9518-9526.
9. Garcia-Perez, E., P. Serra-Crespo, S. Hamad, F. Kapteijn, and J. Gascon, Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field. Physical Chemistry Chemical Physics, 2014. 16(30): p. 16060-16066.
10. Lock, S.S.M., K.K. Lau, I.L.S. Mei, A.M. Shariff, and Y.F. Yeong, Cavity Energetic Sizing Algorithm Applied in Polymeric Membranes for Gas Separation. Procedia Engineering, 2016. 148: p. 855-861.
11. Balçık, M. and M.G. Ahunbay, Prediction of CO2-induced plasticization pressure in polyimides via atomistic simulations. Journal of Membrane Science, 2018. 547: p. 146-155.
12. Lock, S.S.M., K.K. Lau, A.M. Shariff, Y.F. Yeong, and M.A. Bustam, Thickness dependent penetrant gas transport properties and separation performance within ultrathin polysulfone membrane: Insights from atomistic molecular simulation. Journal of Polymer Science Part B: Polymer Physics, 2018. 56(2): p. 131-158.
13. Stavitski, E., E.A. Pidko, S. Couck, T. Remy, E.J. Hensen, B.M. Weckhuysen, J. Denayer, J. Gascon, and F. Kapteijn, Complexity behind CO2 capture on NH2-MIL-53(Al). Langmuir, 2011. 27(7): p. 3970-6.
14. Ramsahye, N., G. Maurin, S. Bourrelly, P. Llewellyn, T. Loiseau, and G. Ferey, Charge distribution in metal organic framework materials: transferability to a preliminary molecular simulation study of the CO2 adsorption in the MIL-53 (Al) system. Physical Chemistry Chemical Physics, 2007. 9(9): p. 1059-1063.
15. Couck, S., E. Gobechiya, C.E. Kirschhock, P. Serra‐Crespo, J. Juan‐Alcañiz, A. Martinez Joaristi, E. Stavitski, J. Gascon, F. Kapteijn, and G.V. Baron, Adsorption and Separation of Light Gases on an Amino‐Functionalized Metal–Organic Framework: An Adsorption and In Situ XRD Study. ChemSusChem, 2012. 5(4): p. 740-750.
16. Serra-Crespo, P., M.A. Van Der Veen, E. Gobechiya, K. Houthoofd, Y. Filinchuk, C.E. Kirschhock, J.A. Martens, B.F. Sels, D.E. De Vos, and F. Kapteijn, NH2-MIL-53 (Al): a high-contrast reversible solid-state nonlinear optical switch. Journal of the American Chemical Society, 2012. 134(20): p. 8314-8317.
17. Ismail, A.F. and J. Jaafar, Matrimid® Membranes, in Encyclopedia of Membranes, E. Drioli and L. Giorno, Editors. 2016, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 1138-1140.
18. Basu, S., A. Cano-Odena, and I.F. Vankelecom, Asymmetric Matrimid®/[Cu3(BTC)2] mixed-matrix membranes for gas separations. Journal of membrane science, 2010. 362(1-2): p. 478-487.
19. Dong, G., H. Li, and V. Chen, Plasticization mechanisms and effects of thermal annealing of Matrimid hollow fiber membranes for CO2 removal. Journal of membrane science, 2011. 369(1-2): p. 206-220.
20. Castro-Muñoz, R., V. Martin-Gil, M.Z. Ahmad, and V. Fíla, Matrimid® 5218 in preparation of membranes for gas separation: Current state-of-the-art. Chemical Engineering Communications, 2018. 205(2): p. 161-196.
21. Chen, Y.-R., L.-H. Chen, K.-S. Chang, T.-H. Chen, Y.-F. Lin, and K.-L. Tung, Structural characteristics and transport behavior of triptycene-based PIMs membranes: A combination study using ab initio calculation and molecular simulations. Journal of Membrane Science, 2016. 514: p. 114-124.
22. Semino, R., N.A. Ramsahye, A. Ghoufi, and G. Maurin, Microscopic Model of the Metal-Organic Framework/Polymer Interface: A First Step toward Understanding the Compatibility in Mixed Matrix Membranes. ACS Appl Mater Interfaces, 2016. 8(1): p. 809-19.
23. Larsen, G.S., P. Lin, K.E. Hart, and C.M. Colina, Molecular simulations of PIM-1-like polymers of intrinsic microporosity. Macromolecules, 2011. 44(17): p. 6944-6951.
24. Larin, S.V., S.G. Falkovich, V.M. Nazarychev, A.A. Gurtovenko, A.V. Lyulin, and S.V. Lyulin, Molecular-dynamics simulation of polyimide matrix pre-crystallization near the surface of a single-walled carbon nanotube. Rsc Advances, 2014. 4(2): p. 830-844.
25. Zhang, Y., I.H. Musselman, J.P. Ferraris, and K.J. Balkus Jr, Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu–BPY–HFS. Journal of Membrane Science, 2008. 313(1-2): p. 170-181.
26. Velioğlu, S., M.G. Ahunbay, and S.B. Tantekin-Ersolmaz, Propylene/propane plasticization in polyimide membranes. Journal of Membrane Science, 2016. 501: p. 179-190.
27. Khosravanian, A., M. Dehghani, M. Pazirofteh, M. Asghari, A.H. Mohammadi, and D. Shahsavari, Grand canonical Monte Carlo and molecular dynamics simulations of the structural properties, diffusion and adsorption of hydrogen molecules through poly (benzimidazoles)/nanoparticle oxides composites. International Journal of Hydrogen Energy, 2018. 43(5): p. 2803-2816.
28. Yaghi, O.M., M. O'keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, and J. Kim, Reticular synthesis and the design of new materials. Nature, 2003. 423(6941): p. 705.
29. Loiseau, T., C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, and G. Férey, A rationale for the large breathing of the porous aluminum terephthalate (MIL‐53) upon hydration. Chemistry–A European Journal, 2004. 10(6): p. 1373-1382.
30. Van Assche, T.R., G.V. Baron, and J.F. Denayer, Molecular separations with breathing metal–organic frameworks: modelling packed bed adsorbers. Dalton Transactions, 2016. 45(10): p. 4416-4430.
31. Serra-Crespo, P., R. Berger, W. Yang, J. Gascon, and F. Kapteijn, Separation of CO2/CH4 mixtures over NH2-MIL-53—An experimental and modelling study. Chemical Engineering Science, 2015. 124: p. 96-108.
32. Chen, L., J.P. Mowat, D. Fairen-Jimenez, C.A. Morrison, S.P. Thompson, P.A. Wright, and T. Düren, Elucidating the breathing of the metal–organic framework MIL-53 (Sc) with ab initio molecular dynamics simulations and in situ X-ray powder diffraction experiments. Journal of the American Chemical Society, 2013. 135(42): p. 15763-15773.
33. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical review letters, 1996. 77(18): p. 3865.
34. Kresse, G. and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science, 1996. 6(1): p. 15-50.
35. Andreoni, W. and A. Curioni, New advances in chemistry and materials science with CPMD and parallel computing. Parallel Computing, 2000. 26(7-8): p. 819-842.
36. Kadantsev, E.S., P.G. Boyd, T.D. Daff, and T.K. Woo, Fast and accurate electrostatics in metal organic frameworks with a robust charge equilibration parameterization for high-throughput virtual screening of gas adsorption. The Journal of Physical Chemistry Letters, 2013. 4(18): p. 3056-3061.
37. Wilmer, C.E., K.C. Kim, and R.Q. Snurr, An extended charge equilibration method. The journal of physical chemistry letters, 2012. 3(17): p. 2506-2511.
38. Rodenas, T., M. van Dalen, E. García-Pérez, P. Serra-Crespo, B. Zornoza, F. Kapteijn, and J. Gascon, Metal-Organic Frameworks: Visualizing MOF Mixed Matrix Membranes at the Nanoscale: Towards Structure-Performance Relationships in CO2/CH4 Separation Over NH2-MIL-53(Al)@PI (Adv. Funct. Mater. 2/2014). Advanced Functional Materials, 2014. 24(2): p. 268-268.
39. Schwerdtfeger, P., The pseudopotential approximation in electronic structure theory. ChemPhysChem, 2011. 12(17): p. 3143-3155.
40. Payne, M.C., M.P. Teter, D.C. Allan, T. Arias, and a.J. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of modern physics, 1992. 64(4): p. 1045.
41. Segall, M., P.J. Lindan, M.a. Probert, C.J. Pickard, P.J. Hasnip, S. Clark, and M. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 2002. 14(11): p. 2717.
42. Tuckerman, M.E., B.J. Berne, G.J. Martyna, and M.L. Klein, Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals. The Journal of Chemical Physics, 1993. 99(4): p. 2796-2808.
43. Sun, H., COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. The Journal of Physical Chemistry B, 1998. 102(38): p. 7338-7364.
44. Hagler, A., P. Dauber, and S. Lifson, Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 3. The C: O. cntdot.. cntdot.. cntdot. HO hydrogen bond and the analysis of the energetics and packing of carboxylic acids. Journal of the American Chemical Society, 1979. 101(18): p. 5131-5141.
45. Halgren, T.A., The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters. Journal of the American Chemical Society, 1992. 114(20): p. 7827-7843.
46. Waldman, M. and A.T. Hagler, New combining rules for rare gas van der Waals parameters. Journal of computational chemistry, 1993. 14(9): p. 1077-1084.
47. Golzar, K., S. Amjad-Iranagh, M. Amani, and H. Modarress, Molecular simulation study of penetrant gas transport properties into the pure and nanosized silica particles filled polysulfone membranes. Journal of membrane science, 2014. 451: p. 117-134.
48. BIOVIA, D. S., Materials Studio. San Diego: Dassault Systèmes. 2016.
49. BIOVIA, D.S., Sorption. San Diego: Dassault Systèmes, 2016.
50. Akkermans, R.L., N.A. Spenley, and S.H. Robertson, Monte Carlo methods in materials studio. Molecular Simulation, 2013. 39(14-15): p. 1153-1164.
51. Zárate, A., R.A. Peralta, P.A. Bayliss, R. Howie, M. Sánchez-Serratos, P. Carmona-Monroy, D. Solis-Ibarra, E. González-Zamora, and I.A. Ibarra, CO2 capture under humid conditions in NH2-MIL-53 (Al): the influence of the amine functional group. RSC Advances, 2016. 6(12): p. 9978-9983.
52. Ali, M.S.M., H. Wahid, N.A.M. Subha, S. Sahlan, M.A.M. Yunus, and A.R. Wahap, Modeling, Design and Simulation of Systems: 17th Asia Simulation Conference, AsiaSim 2017, Melaka, Malaysia, August 27–29, 2017, Proceedings. Vol. 752. 2017: Springer.
53. Hosseini, S.S., M.M. Teoh, and T.S. Chung, Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks. Polymer, 2008. 49(6): p. 1594-1603.
54. Zhao, H.-Y., Y.-M. Cao, X.-L. Ding, M.-Q. Zhou, J.-H. Liu, and Q. Yuan, Poly (ethylene oxide) induced cross-linking modification of Matrimid membranes for selective separation of CO2. Journal of Membrane Science, 2008. 320(1-2): p. 179-184.