跳到主要內容

簡易檢索 / 詳目顯示

研究生: 仝宜中
Yi-Chung Tung
論文名稱: 以DEM為高程控制之弱交會幾何衛星影像區域平差
DTM-Controlled Block Adjustment for Satellite Images with Weak Converging Geometry
指導教授: 陳良健
Liang-Chien Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 87
中文關鍵詞: 影像正射化數值高程模型最小二乘過濾光束法平差
外文關鍵詞: Bundle Adjustment, Least Squares Filtering, Digital Elevation
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在遙測應用中,利用衛星影像進行整合分析之有興趣的區域,常包含兩張甚至多張影像的涵蓋範圍。因此,影像的正射化及正射影像鑲嵌為提供大範圍的影像資料並與其他相關資料整合之重要工作。影像正射化之首要程序為影像之方位重建,使用多航帶區域平差進行方位重建可增強重疊區之幾何一致性。資源衛星影像之主要用途為環境監測及資源探測,為求較大的影像覆蓋面積,不同軌道的影像重疊區域很小,且航帶間普遍具有較弱的交會幾何,傳統上以三維定位為考量之光束法平差模式將不適用。
    本研究將提出一個新的光束法平差程序,針對弱交會幾何之影像,以數值高程模型作為航帶連結點之高程控制進行光束法平差,藉以降低重疊航帶間共軛點之相對偏移(簡稱相對偏移),並改善正射影像間銜接之品質。主要工作包括: (1)以光束法區域平差搭配數值高程模型作為高程控制,進行影像方位之重建,(2)以最小二乘過濾進行衛星軌道精密修正,(3)進行衛星影像正射化,最後進行正射影像鑲嵌。
    實驗結果顯示,加入航帶連結點進行光束法區域平差,能有效降低重疊航帶間共軛點之相對偏移,並減少鑲嵌影像上重疊區影像錯開之現象。


    In various applications, areas of interest sometimes cover two or more satellite images, thus orthorectification and mosaicking for those images becomes important. While orbit adjustment is a prerequisite in the image orthorectification. Performing simultaneous block adjustment for multi-strip images could enhance the geometric consistency among strips. The major applications of the remote sensing images include the detection of natural resources and the monitoring for geoenvironment. In order to acquire largest possible coverage, the overlapping area of satellite images is small in general. In addition, the converging geometry is poor in common. Hence, the traditional 3-D bundle adjustment is not suitable for orientation modeling directly.
    The objective of this investigation is to propose a modified block adjustment procedure using DEMs as elevation control for multi-orbit satellite images. The major works of the proposed scheme are: (1) bundle adjustment using DEM as an elevation control, (2) least squares filtering to collocate the orientation parameters, and (3) generation of the orthophotos along with mosaicking.
    Experimental results indicate that block adjustment can reduce the discrepancies for conjugate points between image strips. It is also demonstrated that the mosaicked image is better seamed when tie points are employed in the adjustment.

    目錄 摘要 i ABSTRACT ii 目錄 iii 圖目錄 vi 表目錄 ix 第一章 前言 1 1.1. 研究動機與目的 1 1.2. 文獻回顧 2 1.3. 研究方法及內容 5 第二章 影像方位重建 10 2.1. 光束法平差模式 11 2.1.1. 工作坐標系統建立 13 2.1.2. 外方位參數近似值之給定 15 2.1.3. 地面點座標初始值之給定 17 2.1.3.1. 光線追蹤法 18 2.1.3.2. 計算航帶連結點地面座標之中點 19 2.1.4. 觀測方程式之組成 20 2.1.5. 收斂之判斷 23 2.2. 數值高程模型之高程控制 24 2.3. 最小二乘過濾法精密修正 26 第三章 影像正射化 28 3.1. 逆轉換模式 28 3.2. 影像重新取樣 30 3.3. 區塊逆轉換模式 30 第四章 正射影像鑲嵌 32 4.1. 重疊區影像灰度值匹配 32 4.2. 影像接合 33 第五章 實驗結果及分析 35 5.1. 實驗資料 37 5.2. 軌道修正之精度評估 41 5.2.1. 軌道精度評估方法 45 5.2.2. 地面定位絕對精度評估 46 5.2.3. 共軛點相對偏移評估 52 5.3. 影像正射化之精度評估 56 5.3.1. 正射影像絕對精度評估 58 5.3.2. 正射影像相對偏移評估 64 5.4. 正射影像鑲嵌之成果 68 5.5. 星曆資料含隨機誤差之評估 74 5.5.1. 研究方法步驟之比較 74 5.5.2. 隨機誤差之給定 77 5.5.3. 含隨機誤差之絕對精度評估 78 5.5.4. 含隨機誤差之相對偏移評估 81 第六章 結論與展望 83 參考文獻 85

    張智安,2002,“EROS A衛星影像幾何改正之研究”,碩士論文,國立中央大學土木工程研究所。
    劉建良,2004,“多航帶推掃式衛星方位平差及影像正射化”,碩士論文,國立中央大學土木工程研究所。
    溫仁佑,2004,“高解析力衛星影像真實正射改正及遮蔽區域補償”,碩士論文,國立中央大學土木工程研究所。
    Chen, L.C., & Chang, L. Y., 1998, “Three Dimensional Positioning Using SPOT Stereostrips with Sparse Control”, Journal of Surveying Engineering, ASCE, 124(2): pp.63-72
    Chen, L.C., & Lee, L.H. 1993, “Rigorous Generation of Digital Orthophoto from SPOT Images.” Photogrammetric Engineering and Remote Sensing, Vol. 59, No 5,655-661
    Chen, L.C., & Teo T. A., 2001, “Orbit Adjustment for EROS A1 High Resolution Satellite Images”, Proceeding of 22nd Asian Conference on Remote Sensing, Singapore, pp1169-1174
    Fritz, L. W., 1999, “High resolution commercial remote sensing satellites and spatial information system”. Highlight of ISPRS, vol.4, No. 2, pp.19-30
    Grodecki, J. and G. Dial, 2003, “Block Adjustment of High-Resolution Satellite Image Described by Rational Function”, Photogrammetric Engineering & Remote Sensing, Vol. 69, No 1, pp.59-68.
    Kim T., Shin. D., & Lee Y.R., 2001, “Development of Robust Algorithm for Transformation of a 3D Object Point onto a 2d Image Point for Linear Pushbroom Imagery”, Photogrammetric Engineering & Remote Sensing, Vol. 67. No. 4. April, pp.449-452.
    Kaichang Di, Ruijin Ma, and Rongxing Li, 2003, “Geometric Processing of Ikonos Stereo Imagery for Costal Mapping Applications”, Photogrammetric Engineering & Remote Sensing, Vol. 69, No 8, pp.873-879.
    Lee, C., Theiss, H. J., Bethel, J. S. & Mikhail, E. M., 2000, “Rigorous Mathematical Modeling of Airborne Pushbroom Imaging System”, Photogrammetric Engineering & Remote Sensing, Vol. 66, No 4, pp.385-392.
    Mikhail, E.M. & F. Ackermann, 1982, “Observation and Least Squares”, University Press of America, New York, pp 393-426
    Nagler, T., and Rott, H., 1998, "Overview of Current and Planned Spaceborne Earth Observation Systems", Space Applications Institute Report, 49 pages.
    O’Neill M.A. & Dowman I.J., 1988, “The Generation of Epipolar Synthetic Stereo Mates for SPOT Images Using A DEM.” International Archives of Photogrammertry and Remote Sensing, Kyoto, Japan, 27(B8) 587-598
    Richards, J.A., 1986, “Remote sensing digital image analysis”, Springer-Verlag, Berlin, 281 pages.
    SPOT IMAGE, 2002, “SPOT Satellite Geometry Handbook S-NT-73-12-SI”, Edition 1, Revision 0, 74pages.
    Toutin, Th.,2003, “Block Bundle Adjustment of IKONOS In-Track Image”, International Journal of Remote Sensing, 24(4):851-857, February 2003.
    Westin, T., 1990, “Precision rectification of SPOT imagery”, photogrammetric Engineering & Remote Sensing, Vol.56, No 2, pp.247-253
    Wiesel, J. W., 1985, “Digital Image Processing for Orthophoto Generation.” Photogrammetria, 40(2), 69-76.
    Wolf, P., & Dewitt, B., 2000, “Elements of Photogrammetry: with applications in GIS”, McGraw-Hill, 3rd edition, 608pages

    QR CODE
    :::