| 研究生: |
吳威霖 Wei-Lin Wu |
|---|---|
| 論文名稱: |
半母數接受者作業特徵曲線之比較及應用 The comparison and application of several approaches for semiparametric Receiver Operating Characteristic curves |
| 指導教授: |
曾議寬
Yi-Kuan Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 接受者作業特徵曲線 、接受者作業特徵曲線下面積 、時間相依接受者作業特徵曲線下面積 |
| 外文關鍵詞: | Receiver Operating Characteristic curve, area under the Receiver Operating Characteristic curve, time-dependent semiparametric area under the Receiver Operating Characteristic curve |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在生物醫學的實驗中,實驗者都會有回診的動作,其收集到的資料為時間相依的資訊。一般傳統的接受者作業特徵曲線,是利用整體時間下的資料當作參數去估計。但這樣的做法不符合長期追蹤資料的性質。近期有許多學者提供了不同運算含時間相依共變數接受者特徵曲線面積的方法,在本篇論文比較最廣為人知的四種利用半母數模型做時間相依下接受者特徵曲線面積的方法,分別為Chambless & Diao (2006) 、Song & Zhou (2008) 、Uno, Cai, Tian & Wei (2007) 以及Heagerty & Zheng (2005) 。本篇以五筆有名的資料為實例,比較各方法的優劣。此五筆資料分別等待心臟移植資料、使用Didanosine以及Zalcitabine愛滋病患者資料、CD4與病毒乘載量對AIDS、原發性肝膽汁硬化(primary biliary cirrhosis)以及果蠅的產蛋數目與存活壽命的關係。最後發現Heagerty & Zheng的結果最佳,所得到的半母數模型做時間相依下接受者特徵曲線面積最為合理。
In biomedical research, many researchers have to follow up and collect patients’ information. In particular, the biomarkers are usually time-dependent data and of interest. In the traditional methods, Receiver Operating Characteristic curves are estimated by fixed covariates. Therefore, it cannot handle the longitudinal data. There are many recent scholars provide the methods which calculate the time-dependent area under the ROC curve. In this thesis, we explore the performance of four popular semi-parametric approaches for estimate of ROC curves possibly with time-dependent covariates. The four methods are Chambless & Diao (2006) , Song & Zhou (2008) , Uno, Cai, Tian & Wei (2007) and Heagerty & Zheng (2005) . We analyze five data sets to do comparison of these methods. The five data sets are Heart Transplant, ddI or ddC in patients, CD4 counts and viral load affect AIDS, primary biliary cirrhosis and total number of eggs laid during lifetime. Through these comparisons, we conclude that Heagerty & Zheng’s method provides fairly reasonable results in both simulation study and the real data sets. It provides the best performance of time-dependent semi-parametric AUC.
Cai Zong-Wu and Sun Yan-Qing. (2003). Local Linear Estimation for Time-Dependent Coefficients in Cox’s Regression Models. Foundation of the Scandinavian Journal of Statistics, 30, 93-111.
Chambless Lloyd E. and Diao Guoqing (2006). Estimation of time-dependent area under the ROC curve for long-term risk prediction. Statistic, 25, 3474-3486.
Crowley John and Hu Marie (1997).Covariance analysis of heart transplant survival data. Journal of the American Statistical Association, 72, 27-36
Etzioni, R., Pepe, M., Longton, G., Hu, C., and Goodman, G. (1999). Incorporating the time dimension in receiver operating characteristic curves: A case study of prostate cancer. Medical Decision Making, 19, 242–251.
Goldman, A., Carlin, B., Crane, L., Launer, C., Korvick, J., Deyton, L. and Abrams, D. (1996).Response of CD4 lymphocytes and clinical consequences of treatment using ddI or ddC in patients with advanced HIV infection. Clinical Science, 11, 161-169.
Heagerty P.J., Lumley T., Pepe M.S. (2000). Time-dependent ROC curves for censored survival data and a diagnosticmarker. Biometrics, 56, 337–344.
Heagerty Patrick J. and Zheng Yingye (2005). Survival Model Predictive Accuracy and ROC Curves. Biometrics, 61, 92–105
Metz J., Aoki A. and Forssmann W. G. (1978). Studies on the ultrastructure and permeability of the hemotrichorial placenta. Cell Tiss. Res. , 192, 391-407.
Robert M., Centor M.D. (1991). Signal detectability the use of ROC curves and their analyses. Medical Decision Making, 11, 102-106.
Slate E. H. and Turnbull B. W. (2000). Statistical models for longitudinal biomarkers of disease onset. Statistics in Medicine 19, 617–637.
Song Xiao and Zhou Xiao-Hua. (2008). A semiparametric approach for the covariate specific ROC curve with survival outcome. Statistica Sinica, 18, 947-965
Swets, J.A. (1995). Signal detection theory and ROC analysis in psychology and diagnostics: Collected papers. Lawrence Erlbaum Associates.
Uno Hajime, Cai Tianxi, Tian Lu and Wei L. J. (2007). Evaluating prediction rules for t-year survivors with censored regression models. Journal of the American Statistical Association, 102:478, 527-537
van de Vijver,M. J., He, Y. D., van’t Veer, L. J., Dai, H., Hart, A. A.M., Voskuil, D. W., Schreiber, G. J., Peterse, J. L., Roberts, C., Marton, M. J., Parrish, M., Atsma, D.,Witteveen, A., Glas, A., Delahaye, L., van der Velde, T., Bartelink, H., Rodenhuis, S., Rutgers, E. T., Friend, S. H., and Bernards, R. (2002), A Gene-Expression Signature as a Predictor of Survival in Breast Cancer. The New England Journal of Medicine, 347, 1999–2009.
Weinstein Milton C. and Fineberg Harvey V. (1980). Clinical Decision Analysis. Ultrasound in Medicine & Biology, 22, 391-398.