跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱信豪
Hsin-Hao Chiu
論文名稱: 基於共同空間型樣之黎曼普氏分析法用於想像運動之腦波分類
Classification of Motor Imagery EEG Signals Using CSP-RPA
指導教授: 徐國鎧
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 96
中文關鍵詞: 腦電圖想像運動黎曼幾何切線空間普氏分析領域自適應
外文關鍵詞: Electroencephalographic, Motor Imagery, Riemannian geometry, tangent space, domain adaptation, transfer learning
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文以黎曼幾何空間為基礎,提出了一種解決腦波數據非平穩性
    的方法,提高跨時段(Cross-sessions)及跨受試者(Cross-subjects)在想像運動
    上的分類性能。腦波訊號普遍存在著不平穩(Non-stationary)的特性,即其數
    據分布隨著時間變化,而這個特性使得腦波在想像運動的分類上受到限制。
    在想像運動腦波錄製過程中,由於受測者不同或受測者錄製腦波的時間、環
    境不同,導致腦電訊號之間存在巨大差異,造成想像運動分類準確率不佳。
    在傳統腦機介面中,雖然此情況可透過大量收集受測者的腦波資料以進行
    校準,然而這將導致系統必須花費過長的校準時間以保持原有的分類準確
    率。而腦機介面領域中的遷移學習方法,將可以藉由源域的資料應用於目標
    域的資料中,因此,可以減少大量錄製腦波資料所需要的時間。本篇主要研
    究內容如下:本論文提出CSP-RPA 方法,以黎曼幾何空間之切線空間作為
    基礎,結合共同空間型樣法(Common Spatial Pattern, CSP)將不同類別之資料
    事先盡可能區分開後以改良現有黎曼普氏分析架構,並且利用基於樹的特
    徵選擇(Tree-based Feature Selection)方式,以減少對於少量腦波數據的特徵
    維度過高所造成的過擬合(Over-fitting)情況,進而提升腦電訊號想像運動分
    類的效果,最後透過BCI 競賽所提供的腦電訊號數據集驗證其演算法之有
    效性,並利用t-SNE 視覺化以證明其特徵領域自適應之效果。


    This thesis presents a transfer learning method based on Riemannian
    geometry for improving the classification accuracy of Electroencephalographic
    (EEG) signals. Non-stationarities are ubiquitous in EEG signals, which means the
    statistical characteristics of EEG signals alter from time to time. The nonstationarities
    of the EEG signals may be caused by different environmental factors
    (e.g. user’s fatigue level, the mental and physical state of user, the location of
    electrodes placement, etc.). Typically, classic Motor Imagery-based Brain-
    Computer Interface (MI-based BCI) requires a calibration session in each run,
    even for recorded subjects. During the calibration session, the subjects requested
    to perform various Motor Imagery (MI) tasks repeatedly, which will be timeconsuming
    and make user feel exhausted. As a consequence, we proposed a
    transfer learning method, namely Common Spatial Pattern Riemannian Procrustes
    Analysis (CSP-RPA), to shorten the calibration time while keeping MI-based BCI
    work optimally. CSP-RPA is based on the tangent space of Riemannian geometric
    spaces and combines the Common Spatial Pattern (CSP) method to modify the
    Riemannian Procrustes Analysis (RPA) architecture. To alleviate the overfitting
    in high-dimensional Riemannian manifold, the tree-based feature selection is
    adopted to reduce the dimensionality after mapping data from Riemannian
    manifold to tangent space. The framework was validated by the publicly available
    EEG dataset 2a of the BCI competition IV. In addition, we used t-SNE (t-
    Distributed Stochastic Neighbor Embedding) to visualize and prove the
    effectiveness of feature domain adaptation after CSP-RPA algorithm. To sum up,
    the experimental results indicate that CSP-RPA is superior to other methods, e.g.,
    Re-center, Parallel Transport, RPA, under cross-sessions and cross-subjects
    conditions.

    摘要 ........................................................................................................................ I Abstract ................................................................................................................ II 致謝 ..................................................................................................................... III 目錄 ..................................................................................................................... IV 圖目錄 ................................................................................................................. VI 表目錄 .................................................................................................................. X 第一章 緒論 ......................................................................................................... 1 1-1 前言 ........................................................................................................ 1 1-2 研究動機與目的 ................................................................................... 2 1-3 文獻回顧 ................................................................................................ 3 1-4 內容大綱 ................................................................................................ 5 第二章 腦電訊號 ................................................................................................. 6 2-1 腦機介面 ................................................................................................ 6 2-2 想像運動 ................................................................................................ 7 2-3 大腦活動區 ............................................................................................ 8 2-4 遷移學習於腦機介面領域之研究發展 ............................................... 9 第三章 黎曼幾何 ............................................................................................... 11 3-1 黎曼幾何 .............................................................................................. 11 3-1-1 前言 .......................................................................................... 11 3-1-2 對稱正定矩陣定義與特性 ...................................................... 12 3-1-3 黎曼指數/對數投影 ................................................................. 13 3-1-4 黎曼幾何距離 .......................................................................... 17 3-1-5 黎曼均值 .................................................................................. 18 3-2 黎曼普氏分析法 ................................................................................. 20 3-3 CSP-RPA 設計與實現 .......................................................................... 27 3-3-1 共同空間型樣法(Common Spatial Pattern, CSP) ................... 27 3-3-2 黎曼切線空間 .......................................................................... 30 3-3-3 共同空間型樣黎曼普氏分析法 .............................................. 32 第四章 實驗結果與討論 ................................................................................... 38 4-1 腦波資料 .............................................................................................. 38 4-1-1 BCI 競賽 IV IIa ....................................................................... 38 4-1-2 t-SNE 視覺化 ............................................................................ 40 4-2 跨時段遷移學習之實驗結果 ............................................................. 43 4-3 跨受試者遷移學習之實驗結果 ......................................................... 61 第五章 結論與未來展望 ................................................................................... 75 參考文獻 ............................................................................................................. 77

    [1] M. Krauledat, M. Tangermann, B. Blankertz, and K.-R. Muller, “Towards
    zero training for brain-computer interfacing,” PLoS One, vol. 3, no. 8, pp.
    1-12, 2008.
    [2] S. Fazli, F. Popescu, M. Danoczy, B. Blankertz, K.-R. Muller, and C. Grozea,
    “Subject independent mental state classification in single trials,” Neural
    Networks, vol. 22, no. 9, pp. 1305-1312, 2009.
    [3] F. Lotte and C. Guan, “Regularizing common spatial patterns to improve
    BCI designs: Unified theory and new algorithms,” IEEE Transactions on
    Biomedical Engineering, vol. 58, no. 2, pp. 355-362, 2011.
    [4] A. Barachant, S. Bonnent, M. Congedo, and C. Jutten, “Multiclass braincomputer
    interface classification by Riemannian geometry,” IEEE
    Transactions on Biomedical Engineering, vol. 59, no. 4, pp. 920-928, 2012.
    [5] H. Raza, D. Rathee, S. -M. Zhou, H. Cecotti, and G. Prasad, “Covariate shift
    estimation based adaptive ensemble learning for handling non-stationarity
    in motor imagery related EEG-based brain-computer interface,”
    Neurocomputing, vol. 343, pp. 154-166, 2019.
    [6] P. L. C. Rodrigues, C. Jutten, and M. Congedo, “Riemannian procrustes
    analysis: Transfer learning for brain-computer interfaces,” IEEE
    Transactions on Biomedical Engineering, vol. 66, no. 8, pp. 2390-2401,
    2019.
    [7] C. Brunner, R. Leeb, G. Muller-Putz, A. Schlogl, and G. Pfurtscheller, “BCI
    competition 2008- Graz data set A,” Institute for Knowledge Discovery
    (Laboratory of Brain-Computer Interfaces), Graz University of Technology,
    pp 136-142, 2008.
    [8] P. Zanini, M. Congedo, C. Jutten, S. Said, and Y. Berthoumieu, “Transfer
    learning: A Riemannian geometry framework with applications to braincomputer
    interfaces,” IEEE Transactions on Biomedical Engineering, vol.
    65, no. 5, pp. 1107-1116, 2018.
    [9] O. Yair, M. Ben-Chen, and R. Talmon, “Parallel transport on the cone
    manifold of SPD matrices for domain adaptation,” IEEE Transactions on
    Signal Processing, vol. 67, no. 7, pp. 1797-1811, 2019.
    [10] A. Barachant, S. Bonnet, M. Congedo, and C.Jutten, “Classification of
    covariance matrices using a Riemannian-based kernel for BCI applications,”
    Neurocomputing, vol. 112, pp. 172-178, 2013.
    [11] F. Yger, M. Berar, and F. Lotte, “Riemannian approaches in brain-computer
    interfaces: A review,” IEEE Transactions on Neural Systems and
    Rehabilitation Engineering, vol. 25, no. 15, pp.175.-1762, 2018.
    [12] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal
    of Machine Learning Research, vol. 9, pp. 2579-2605, 2008.
    [13] H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, “Optimal spatial
    filtering of single trial EEG during imagined hand movement,” IEEE
    Transactions on Rehabilitation Engineering, vol. 8, no. 4, pp. 441-446,
    2000.
    [14] X. Xie, Z. L. Yu, H. Lu, Z. Gu, and Y. Li, “Motor imagery classification
    based on bilinear sub-manifold learning of symmetric positive-definite
    matrices,” IEEE Transactions on Neural Systems and Rehabilitation
    Engineering, vol. 25, no. 6, pp. 504-516, 2016.
    [15] H. Morioka, A. Kanemura, J. Hirayama, M. Shikauchi, T.Ogawa, S. Ikeda,
    M. Kawandabe, and S. Ishii, “Learning a common dictionary for subject transfer decoding with resting calibration,” NeuroImage, vol. 111, pp. 167-
    178, 2015.
    [16] A. M. Azab, L. Mihaylova, K. K. Ang, and M. Arvaneh, “Weighted transfer
    learning for improving motor imagery-based brain-computer interface,”
    IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.
    27, no. 7, pp. 1352-1359, 2019.
    [17] A. Y. Kaplan, A. A. Fingelkurts, A. A. Fingelkurts, S. V. Borisov, and B. S.
    Darkhovsky, “Nonstationary nature of the brain activity as revealed by
    EEG/ MEG: Methodological, practical and conceptual challenges,” Signal
    Process., vol. 85, no. 11, pp. 2190-2212, 2005.
    [18] P. Shenoy, M. Krauledat, B. Blankertz R.P.N. Rao, and K.-R. Müller,
    “Towards adaptive classification for BCI,” J. Neural Eng., vol. 3, no. 1, pp.
    R13-R26, 2006.
    [19] H. Raza, D. Rathee, S.-M. Zhou, H. Cecotti, and G. Prasad, “Covariate shift
    estimation based adaptive ensemble learning for handling non-stationarity
    in motor imagery related EEG-based brain-computer interface,”
    Neurocomputing, vol. 343, pp. 154-166, 2019.
    [20] G. Pfurtscheller and C. Neuper, “Motor imagery and direct brain-computer
    communication,” Proc. IEEE, vol. 89, no. 7, pp. 1123-1134, 2001.
    [21] J. del R. Millán, F. Renkens, J. Mouriño, and W. Gerstner, “Non-invasive
    brain-actuated control of a mobile robot by human EEG,” IEEE Trans.
    Biomed. Eng., vol. 51, no. 6, pp. 1026-1033, 2004.
    [22] M. Cheng, X. Gao, and S. Gao, “Design and implementation of a braincomputer
    interface with high transfer rates,” IEEE Trans. Biomed. Eng., vol.
    49, no. 10, pp. 1181-1186, 2002.
    [23] R. Panicker, S. Puthusserypady, and Y. Sun, “An asynchronous P300 BCI
    with SSVEP-based control state detection,” IEEE Trans. Biomed. Eng., vol.
    58, no. 6, pp. 1781-1788, 2011.
    [24] N. Sharma, V. M. Pomeroy, and J-C. Baron, “Motor imagery: A backdoor
    to the motor system after stroke?” Stroke, pp. 1941-1952, 2006.
    [25] H. H. Ehrsson, S. Geyer, and E. Naito, “Imagery of voluntary movement of
    fingers, toes, and tongue activates corresponding body-part-specific motor
    representations,” J. Neurophysiol., vol. 90, pp. 3304-3316, 2003.
    [26] E. Iánez, J. M. Azorín, A. Úbeda, J. Ferrández, and E. Fernández, “Mental
    tasks-based brain-robot interface,” Robot. Autonom. Syst., vol. 58, no. 12,
    pp. 1238-1245, 2010.
    [27] J. Long, Y. Li, H. Wang, T. Yu, J. Pan, and F. Li, “A hybrid brain computer
    interface to control the direction and speed of a simulated or real wheelchair,”
    IEEE Trans. Neural Syst. Rehabil. Eng., vol. 20, no. 5, pp. 720-729, 2012.
    [28] A. Nourmohammadi, M. Jafari, and T. O. Zander, “A survey on unmanned
    aerial vehicle remote control using brain-computer interface,” IEEE
    Transactions on Human-Machine Systems, vol. 48, no. 4, pp. 337-348, 2018.
    [29] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl.
    Data Eng., vol. 22, no. 10, pp. 1345-1359, 2010.
    [30] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,”
    J. Big Data, vol. 3, no. 1, pp. 1-40, 2016.
    [31] W. Förstner and B. Moonen, “A metric for covariance matrices,” Technical
    Report, Dept. of Geodesy and Geoinformatics, Stuttgart Univ., 1999.
    [32] P. T. Fletcher and S. Joshi, “Principal geodesic analysis on symmetric
    spaces: Statistics of diffusion tensors,” Proc. Comput. Vis. Math. Methods
    Med. Biomed. Image Anal., 2004, pp. 87-98.
    [33] R. Bhatia, Positive Definite Matrices. Princeton Univ. Press, 2007.
    [34] M. Moakher, “A differential geometric approach to the geometric mean of
    symmetric positive-definite matrices,” SIAM J. Matrix Analysis and
    Applications, vol. 26, pp. 735-747, 2005.
    [35] J. C. Gower and G. B. Dijksterhuis, Procrustes Problems. Oxford
    University Press, vol. 3, 2004.
    [36] Z. J. Koles, “The quantitative extraction and topographic mapping of the
    abnormal components in the clinical EEG,” Electroenc. Clin. Neurophys.,
    vol. 79, pp. 440-447, 1991.
    [37] A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, “Riemannian
    geometry applied to BCI classification,” in Latent Variable Analysis and
    Signal Separation. Berlin, Germany: Springer-Verlag, 2010, pp. 629-636.
    [38] V. Jayaram, M. Alamgir, Y. Altun, B. Scholkopf, and M. Grosse-Wentrup,
    “Transfer learning in brain-computer interface,” IEEE Comput. Intell. Mag.,
    vol. 11, no. 1, pp. 22-30, 2016.
    [39] F. Lotte et al., “A review of classification algorithms for EEG-based braincomputer
    interfaces: A 10 year update,” J. Neural Eng., vol. 15, no. 3, 2018,
    Art. No. 031005.

    QR CODE
    :::