| 研究生: |
林俊成 Chun-Cheng Lin |
|---|---|
| 論文名稱: |
小型陣列式角反射器於合成孔徑雷達邊坡監測之研發測試 Development and Testing of Small Corner Reflector for Synthetic Aperture Radar for Slope Monitoring |
| 指導教授: | 鐘志忠 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 合成孔徑雷達 、小型角反射器 、角反射器 、雷達截面積 |
| 外文關鍵詞: | Small Corner Reflector, Radar Cross Section |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣位於環太平洋地震帶上,地震頻繁且地勢陡峭,所以地質較不穩定,每當豪雨發生時山區時常發生土石鬆動與崩滑之現象,為保護民眾的生命財產安全,必須對山坡地建立一套更詳盡的監測系統。本研究主要探討使用合成孔徑雷達(Synthetic Aperture Radar, SAR)配合小型角反射器(Corner Reflector, CR)於邊坡穩定之應用。本研究設計一小型CR,使其體積小、重量輕及裝設容易,以提供更可靠之SAR反射點。本研究透過基礎雷達截面積(Radar Cross-Section)原理,設計小型CR之外型及大小,可改變CR之最大RCS及最大反射角度;因小型CR的訊號較小,本研究以陣列式裝設來增加反射強度。為驗證其可行性,先於多重物理有限元素模型軟體中進行模擬可行性,後續再透過地基合成孔徑雷達(Grand-Base Synthetic Aperture Radar, GB-SAR)進行現地試驗。其成果顯示,NCU現地測試時所量測到的RCS數值為24.29 dBsm,與預期的陣列式CR的25.18 dBsm相近,皆比單一CR的10 dBsm高,可顯示出在增加CR的數量來增強反射量是可行的。小型CR較為容易攜帶及安裝,但仍有反射量增加幅度小與雷達干涉問題,因此本研究透過專業RCS模擬方式進行驗證,雖然在陣列式CR中會產生不規則的散射現象,但大致上與本研究自行提出之理論預測成果是相符的,且本研究提出不同CR排列下之影響干擾。目前將於秀巒崩塌地進行陣列式CR裝設與監測,對該地區進行雷達反射量分析可確認在裝設區中大部分之區域皆為黑色區域,現已將CR部署在該地區中,以對後續試驗做測試規劃。
Taiwan is located in the Pacific Rim seismic zone, where earthquakes are frequent, and the terrain is steep, so the geology is relatively unstable. This study focuses on using Synthetic Aperture Radar (SAR) with a small Corner Reflector (CR) for slope stabilization. In this study, a small CR with lightweight and easy installation is designed to provide more reliable SAR reflected scatters. The CR's maximum RCS and maximum reflection angle can be changed by designing the compact CR's external shape and size based on the Radar Cross-Section principle. In order to verify the feasibility, we first simulated the feasibility in the multiphysics finite element software. We then conducted the field test by the Grand-Base Synthetic Aperture Radar (GB-SAR). Based on the present results, the measured RCS value of 24.29 dBsm in the field test at NCU is similar to the expected 25.18 dBsm for the array CR. The RCS value is 10 dBsm higher than a single CR, indicating that it is feasible to increase the number of CRs to enhance the reflection amount. Although irregular scattering phenomena will occur in the array CR, it is generally consistent with the theoretical prediction results proposed by this study, and this study has examined the influence of interference under different CR arrangements with RCS radar simulation software. Currently, an array CR will be installed and monitored at the Xiulan collapse site, and radar reflectance analysis of the area confirms that most of the area in the installation zone is black. The CR has been deployed in the area for test planning for subsequent tests.
王國隆、林俊廷(2015),運用ALOS PALSAR 雷達影像之差分干涉成果於潛在崩塌地調查–以眉溪流域為例,航測及遙測學刊。
王彥平,白澤朝,林贇 & 李洋. (2021). InSAR 雙向矩形角反射器陣列形變監測精度評估與驗證. 武漢大學學報 信息科學版, 46(10), 1471-1477.
李璟芳,林士淵,蔡亞倫 & 黃韋凱. (2018). 星載合成孔徑雷達影像於公路邊坡及電塔安全評估之應用. 中興工程, (140), 21-31.
林慶偉(2016) ,大規模崩塌多元多尺度綜合監測、資料綜整分析與滑動機制研究:以太平山蘭台地區為例(II)-大規模崩塌多元多尺度綜合監測、資料綜整分析與滑動機制研究:以太平山蘭台地區為例(II),國科會研究報告。
廖志中 潘以文 李國維 王慧蓉 康耿豪 簡翊文 鄭又珍 李膺讚 林貴崑,(2017),大規模崩塌潛勢區的調查與監測,臺灣林業雙月刊,43卷,第5期。
Abolmasov, B., Milenković, S., Jelisavac, B., Pejić, M., Radić, Z., (2014), The Analysis of Landslide Dynamics Based on Automated GNSS Monitoring—A Case Study _ Engineering Geology for Society and Territory - Volume 2 _ p 143 – 146.
Barla, G., Antolini, F., Barla, M., Mensi, E., Piovano, G., (2010), Monitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniques, Eng. Geol., 116(3–4):218–235.
Brückl, E., Brunner, FK., Kraus, K., (2006), Kinematics of a deep-seated landslide derived from photogrammetric GPS and geophysical data, Eng. Geol., 88, 149 - 159.
Couture, R., Charbonneau, F., Singhroy, V., Murnaghan, K., Drouin, H. (2011). PTA-InSAR rock slope monitoring at the Gascons site, Gaspe Peninsula, Quebec: Preliminary results, 5th, Canadian conference on geotechnique and natural hazards; 2011; Kelowna, Canada.
Dheenathayalan, P., Cuenca, M. C., Hoogeboom, P., & Hanssen, R. F. (2017). Small reflectors for ground motion monitoring with InSAR. IEEE Transactions on Geoscience and Remote Sensing, 55(12), 6703-6712.
European Space Agency (ESA), (2015), S1-Radiometric-Calibration-V1.0
Ferretti, A., Prati, C., & Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on geoscience and remote sensing, 38(5), 2202-2212.
Garthwaite, M. C., Nancarrow, S., Hislop, A., Thankappan, A., Dawson, J. H., & Lawrie, S. The Design of Radar Corner Reflectors for the Australian Geophysical Observing System; Geoscience Australia: Canberra, Australia, 2015.
Gili, JA, Corominas, J, Rius, J, (2000), Using global positioning system techniques in landslide monitoring, Engineering geology 2000, p167 - 192.
Hayati, N., Niemeier, W., & Sadarviana, V. (2020). Ground deformation in the Ciloto landslides area revealed by multi-temporal InSAR. Geosciences, 10(5), 156.
Hooper, A., Segall, P., Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to volcán alcedo, galápagos. Journal of Geophysical Research, 112(B7). doi:10.1029/2006jb004763
Hu, X.; Lu, Z.; Pierson, T.C.; Kramer, R.; George, D.L. (2018) Combining InSAR and GPS to determine transient movement and thickness of a seasonally active low-gradient translational landslide. Geophys. Res. Lett. 45, 1453–1462.
Lanari, R., Casu, F., Manzo, M., Zeni, G., Berardino, P., Manunta, M., Pepe, A. (2007). An overview of the small baseline subset algorithm: A dinsar technique for surface deformation analysis. Pure and Applied Geophysics, 164(4), 637-661. doi:10.1007/s00024-007-0192-9.
Liu S.H., C.W. Lin, R.F. Chen, L. Zhang, and B. Fruneau., (2014), Application of TCP-InSAR technique for the Deep-Seated landslides detection and monitoring at Cingjing village, Taiwan. In submission.
Jian, L. X. and Tseng, K. H. (2019a) Time Series Deformation Revealed by the Combination with SAR Techniques and a Network of GPS Continuous Stations, The 38th Conference on Surveying and Geomatics, Taoyuan, Taiwan, 29-30 August 2019.
Jian, L. X., and Tseng, K. H. (2019b) Spatiotemporal Pattern of Surface Deformation in Southwestern Taiwan Revealed by Densified SAR Timeseries, Asia Oceania Geosciences Society, Singapore, 29 July - 2 August 2019.
Peter Bobrowsky, Wendy Sladen, DavidHuntley, ZhangQing, Chris Bunce, Tom Edwards, Michael, Hendry, Derek Martin, Eddie Choi (2014), Multi-parameter Monitoring of a Slow Moving Landslide: Ripley Slide, British Columbia, Canada _ Engineering Geology for Society and Territory - Volume 2 _ p 155 - 158.
Prabu Dheenathayalan, Member, IEEE, Miguel Caro Cuenca, Peter Hoogeboom, and Ramon F. Hanssen, Senior Member, IEEE, (2017), Small Reflectors for Ground Motion Monitoring With InSAR.
Zhang, L, Ding, XL, Lu, Z, (2011), Deformation Rate Estimation on Changing Landscapes using Temporarily Coherent Point InSAR, Proc. Fringe.
Zhu, W., Zhang, Q., Ding, X.-L., Zhao, C., Yang, C., Qu, F., Qu, W. (2014) Landslide monitoring by combining of CR-InSAR and GPS techniques. Advances in Space Research, 53, 430–439.