| 研究生: |
何銘軒 Ming-hsuan Ho |
|---|---|
| 論文名稱: |
含雙?吩環戊烷之紅色與綠色共軛高分子用於電致變色材料上之研究 Neutral State Red and Green Electrochromic Conjugated Polymers Based on DOCPDT |
| 指導教授: |
吳春桂
Chun-Guey Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 共軛高分子 、電致變色材料 、低能隙高分子 |
| 外文關鍵詞: | processable conducting polymer, low bandgap polymer, electrochromic materials |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電致變色材料用於智慧型窗戶上時,可作為一新型節能材料。同時也能應用於在電子書與顯示器,共軛高分子因具有應答時間快、色彩多樣性與光學對比高,以及驅動電壓低,著色效率高與元件製備容易等優勢,成為一具有發展潛力的電致變色材料。本研究為新結構電致變色高分子的開發,發展出一系列應用在電致變色材料上的紅色與綠色共軛高分子,我們以DOCPDT做為基本單元,與芳香環Benzene (B)、Biphenyl (BP),或兩個電子受體2,3-di(thiophen-2-yl)-2, 3-dihydroquinoxaline (DTQ)、2,3-di(benzen-2-yl)-2,3-dihydroquinoxaline (DBQ)進行偶合成含兩單元的單體後,再以化學氧化聚合方式聚合成共聚物,分別得到紅色與綠色高分子,以NMR鑑定其結構,再以TGA、SEM、GPC進行基本特性測量,之後再以電化學光學同步裝置測量高分子膜的電致變色特性,由實驗結果得知,共聚物PBDOCPDT-BP在中性態呈現紅色,應答時間可達次秒(0.5s),具有高著色效率(550cm2/C)與高度穩定性(90%),為一優良的紅色電致變色材料,而共聚物PBDOCPDT-DBQ在中性態時呈現綠色,而在氧化態時為穿透度高的淡綠色,在電變色行為方面,應答時間為1s左右,且在一千次顏色改變之後光學對比穩定性可維持90%以上,亦為一優良的綠色電致變色材料。
Electrochromic materials can be applied in Smart Windows to save energy. It also can be used in e-book and display. Conjugated polymers are potentially useful electrochromic materials due to their advantages of fast response time, multiple color, high optical contrast, high coloration efficiency and good processibility. In this study, we focus on the conjugated polymers with three primary color RGB (Red, Green, Blue) with DOCPDT in the polymer backbone. DOCPDT coupled with different moieties such as Benzene (B)、Biphenyl (BP) or electron acceptor such as 2,3-di(thiophen-2-yl)-2, 3-dihydroquinoxaline (DTQ) or 2,3-di(benzenyl)-2, 3-dihydroquinoxaline (DBQ) to form the monomer of the copolymer. The copolymers were obtained by chemical oxidative polymerization of the corresponding monomers. The structures of these copolymers were identified by 1H-NMR spectroscopy and their electrochromic properties were well studied. The copolymer PBDOCPDT-BP shows a beautiful red color in neutral state, with a fast response time (0.5s) high coloration efficiency (550cm2/C) and good stability (90%). PBDOCPDT-DBQ exhibits reversible electrochromic properties with color changes from deep green in the neutral state to light green in the oxidized state. After 1000 cycles of redox switches, the ΔT value more 90% of the original value, is a promising green electrochromic polymer.
[1] F. C. Krebs, Nature Mater. 2008, 7, 766–767
[2] P. R. Somani, S. Radhakrishnan, Materials Chemistry and Physics. 2002, 77, 117-133
[3] A. Watanabe, K. Mori, Y. Iwasaki, Y. Nakamura, S. Niizuma Macromolecules 1987, 20, 1793-1796
[4] J. Fei, K. G. Lim, G. T. R. Palmore, Chem. Mater. 2008, 20, 3832–3839
[5] B. C. Thompson, P. Schottland, K. Zong, J. R. Reynolds, Chem. Mater. 2000, 12, 1563-1571.
[6] C. G. Wu, M. I. Lu, S. J. Chang, C. S. Wei, Adv. Funct. Mater. 2007, 17, 1063-1070.
[7] A. A. Argun, P. H. Aubert, B. C. Thompson, I. Schwendeman, C. L. Gaupp, J. Hwang, N. J. Pinto, D. B. Tanner, A. G. MacDiarmid, J. R. Reynolds, Chem. Mater. 2004, 16, 4401-4412.
[8] P. M. Beaujuge, J. R. Reynolds, Chem. Rev. 2010, 110, 268–320
[9] G. Sonmez, H. Meng, F. Wudl, Chem. Mater. 2004, 16, 574-580
[10] D. R. Rosseinsky, R. J. Mortimer, Adv. Mater. 2001, 13, 783-793
[11] C. G. Granqvist, Solar Energy Materials & Solar Cells 2008, 92, 203–208
[12] M. Gr?tzel, Nature, 2001, 409, 575-576
[13] D. Corr, U. Bach, D. Fay, M. Kinsella, C. McAtamney, F. O’Reilly, S. N. Rao, N. Stobie, Solid State Ionics 2003, 165,315– 321
[14] J. R. Platt, J. Chem. Phys. 1961, 34, 862-863
[15] R. J. Mortimer, Chemical Society Reviews 1997, 26, 147-156
[16] R. J. Mortimer, Electrochimica Acta 1999, 44, 2971-2981
[17] R. J. Mortimer, A. L. Dyer, J. R. Reynolds, Displays 2006, 27, 2–18
[18] R. M. Walczak, J. R. Reynolds, Adv. Mater. 2006, 18, 1121–1131
[19] G. Sonmez, I. Schwendeman, P. Schottland, K. Zong, J. R. Reynolds, Macromolecules 2003, 36, 639-647
[20] C. G. Granqvist, Solar Energy Materials & Solar Cells 2000, 60, 201-262
[21] P. M. Beaujuge, S. Ellinger, J. R. Reynolds, Adv. Mater. 2008, 20, 2772–2776
[22] P. Tehrani, L. O. Hennerdal, A. L. Dyer, J. R. Reynolds, M. Berggren, J. Mater. Chem, 2009, 19, 1799–1802
[23] S. A. Sapp, G. A. Sotzing, J. L. Reddinger, J. R. Reynolds, Adv. Mater. 1996, 8, 808-811
[24] G. Sonmez, Chem. Commun., 2005, 5251–5259
[25] A. Kumar, D. M. Welsh, M. C. Morvant, F. Piroux, K. A. Abboud, J. R. Reynolds, Chem. Mater. 1998, 10, 896-902
[26] G. Sonmez, H. Meng, Q. Zhang, F. Wudl, Adv. Funct. Mater, 2003, 9, 726-731
[27] G. A. Sotzing, J. R. Reynolds, P. J. Steel, Chem. Mater. 1996, 8, 882-889
[28] G. A. Sotzing, J. L. Reddinger, J. R. Reynolds, Synthetic Metals 1997, 84, 199-201
[29] D. Witker, J. R. Reynolds, Macromolecules 2005, 38, 7636-7644
[30] J. L. Reddinger, G. A. Sotzing, J. R. Reynolds, Chem. Commun. 1996, 1777-1778
[31] G. A. Sotzing, J. L. Reddinger, A. R. Katritzky, J. Soloducho, R. Musgrave, J. R. Reynolds, Chem. Mater. 1997, 9, 1578 1587
[32] G. Zotti, G. Schiavon, S. Zecchin, L. Groenendaal, Chem. Mater. 1999, 11, 3624 3628
[33] G. A. Sotzing, J. R. Reynolds, J. CHEM. SOC. CHEM. COMMUN. 1995, 703-704
[34] Y. Fu, H. Cheng, R. L. Elsenbaumer, Chem. Mater. 1997, 9, 1720-1724
[35] G. A. Sotzing, C. A. Thomas, J. R. Reynolds, Macromolecules 1998, 31, 3750-3752
[36] S. A. Sapp, G. A. Sotzing, J. R. Reynolds, Chem. Mater. 1998, 10, 2101-2108
[37] C. L. Gaupp, J. R. Reynolds, Macromolecules 2003, 36, 6305-6315
[38] G. Sonmez, C. K. F. Shen, Y. Rubin, F. Wudl, Angew. Chem. Int. Ed. 2004, 43, 1498 –1502
[39] G. Sonmez, H. B. Sonmez, C. K. F. Shen, F. Wudl, Adv. Mater. 2004, 16, 1905-1908
[40] A. Durmus, G. E. Gunbas, L. Toppare, Chem. Mater. 2007, 19, 6247–6251
[41] G. Sonmez, F. Wudl, J. Mater. Chem. 2005, 15, 20–2
[42] U. Salzner, M. E. Kose, J. Phys. Chem. B 2002, 106, 9221 9226
[43] U. Salzner, J. Phys. Chem. B 2002, 106, 9214 9220
[44] B. C. Thompson, P. Schottland, K. Zong, J. R. Reynolds, Chem. Mater. 2000, 12, 1563-1571
[45] B. C. Thompson, P. Schottland, G.Sonmez, J. R. Reynolds, Synthetic Metals 2001, 119, 333-334
[46] A. Kumar, J. R. Reynolds, Macromolecules 1996, 29, 7629-7630
[47] H. W. Heuer, R. Wehrmann, S. Kirchmeyer, Adv. Funct. Mater. 2002, 12, 89-94
[48] D. M. Welsh, A. Kumar, E. W. Meijer, J. R. Reynolds, Adv. Mater. 1999, 11, 1379-1382
[49] L. B. Groenendaal, G. Zotti, P. H. Aubert, S. M. Waybright, J. R. Reynolds, Adv. Mater. 2003, 15, 855-879
[50] L. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds, Adv. Mater. 2000, 12, 481-494
[51] C. L. Gaupp, D. M. Welsh,R. D, Rauh, J. R. Reynolds, Chem.Mater. 2002, 14, 3964-3970
[52] F. Algı, A. Cihaner, Organic Electronics 2009, 10, 704–710
[53] A. Durmus, G. E. Gunbas, L. Toppare, Chem. Mater. 2007, 19, 6247–6251
[54] G. E. Gunbas, A. Durmus, L. Toppare, Adv. Funct. Mater. 2008, 18, 2026–2030
[55] G. E. Gunbas, Asuman Durmus, and Levent Toppare, Adv. Mater. 2008, 20, 691–695
[56] C. G. Wu, M.I. Lu, P. F. Tsai, Macromol. Chem. Phys. 2009, 210, 1851–1855
[57] F. Ozyurt, E. G. Gunbas, A. Durmus, L. Toppare, Organic Electronics 2008, 9, 296–302
[58] O. Atwani, C. Baristiran, A. Erden, G. Sonmez, Synthetic Metals 2008, 158, 83–89
[59] Y. A. Udum, E. Yildiz, G. Gunbas, L. Toppare, Journal of Polymer Science Part A: Polymer Chemistry 2008, 46, 3723–3731
[60] Y. A. Uduma, A. Durmus, G. E. Gunbas, L. Toppare, Organic Electronics 2008, 9, 501–506
[61] C. L.Pai, C. L. Liu, W. C. Chen, S. A. Jenekhe, Polymer, 2006, 47, 699-708
[62] A. Berlin, A. Zanelli, Chem. Mater. 2004, 16, 3667 3676
[63] G. E. Gunbas, P. Camurlu, I. M. Akhmedov, C. Tanyeli, A. M. Onal, L. Toppare, Journal of Electroanalytical Chemistry 2008, 615, 75–83
[64] P. M. Beaujuge, S. Ellinger, J. R. Reynolds, Nature Materials 2008, 7, 795-799
[65] A, Durmus, G. E. Gunbas, P. Camurlub, L. Toppare, Chem. Commun., 2007, 3246–3248