| 研究生: |
周聖凱 Shen-kai Chou |
|---|---|
| 論文名稱: |
載子在伸張應變型鍺量子點陣列中直接能隙轉換之研究 Study of Direct-bandgap transition from tensile strained Ge quantum-dots array |
| 指導教授: |
李佩雯
Pei-wen Li 郭明庭 Ming-ting Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 鍺量子點 、直接能隙傳輸 |
| 外文關鍵詞: | Ge quantum dot, Direct-bandgap transist |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用感應耦合SF6/C4F8電漿蝕刻定義矽鍺串珠柱狀陣列之後,再佐以選擇性高溫氧化將矽鍺串珠柱狀陣列轉換成鍺奈米晶粒簇團/二氧化矽柱狀陣列。利用氮化矽間壁層得以促進鍺奈米晶粒簇團有效聚集的特性,在900℃ 高溫熱回火環境下,進一步將鍺奈米晶粒簇團聚集成鍺量子點。在此高溫氧化過程中,鍺會不斷與二氧化矽鍵結並因氧化層的體積膨脹而向外拉扯,導致最後形成的鍺量子點會感受到伸張式的應力。根據拉曼光譜分析其伸張應力約為 0.4~1.6%,有助於鍺量子點內的載子得以經由直接能隙複合發光。因此,本文開發製備出鍺量子點碟型共振腔結構,以增強鍺量子點發光的強度並探討其光學特性。
透過光激發螢光譜線可得知受到伸張應力影響的鍺量子點之光激發峰值約在 0.83 eV,趨近於鍺材料中導電帶的Γ valleys 到價電帶的能量差,證明其確實具有直接能隙傳輸複合的可能性。另外根據強度相依的光激發螢光量測譜線可得到α 趨近於1,表示光訊號是來自於導/價電帶中激子複合而成,而透過溫度相依光激發螢光譜線量測可得知鍺量子點的活化能約為 10~17 meV,此外亦透過時間解析光激發螢光量測鍺量子點的載子複合時間約為 4.7 ns。本文呈現利用伸張應力改變鍺量子點的能隙,其峰值 0.83 eV對應其發光波長約為 1500 nm 可有效應用於現今近紅外光通訊波段。經由掃描式電容-電壓特性曲線,亦可以觀察到在980 nm的光照射下,有明顯的滯留迴路特性,再次驗證伸張式形變之鍺量子點陣列具有直接能隙吸光之能力。
In this thesis, we formed abacus-bead SiGe pillar array by using SF6/C4F8 Inductively Coupled Plasma etching, and followed by selectivity oxidation transforming the abacus-bead SiGe pillar array into Ge nanocrystallites/SiO2 ¬pillar array. With the help of Si3N4 sidewall layer on movement and segregation of Ge nanocrystallites, germanium quantum dots (Ge QDs) were fabricated at 900℃ thermal annealing.
During high-temperature oxidation, germanium would bond with as-formed SiO2 continuously and then be pulled outwards because of volume expanding of SiO2, leading to the tensile strain state in Ge QDs. Raman Spectroscopy measurement confirmed that the tensile strain in Ge QDs was about 0.4~1.6%, leading to a quasi-direct bandgap transition properties of Ge QDs. Therefore, we developed a Microdisk cavity for fabricated Ge QDs to enhance Ge-QD luminousness and explored its optical properties.
The corresponding photoluminescence (PL) peak of Ge-QD Microdisk centered
at 0.83eV, which corresponded to the energy difference from Γ valleys to valance band in germanium, demonstrating the probability of direct-transition recombination for Ge QDs. Besides, a fitted α approaching to 1 in the power-dependent PL spectra suggested that PL emission was being dominated by exciton recombination in the Ge QDs and furthermore, the activation energy (Ea) extracted from temperature- dependent PL was about 10~17 meV. Time-resolved photoluminescence show the carrier lifetime of ~ 4.7 ns. This study demonstrated the modification of Ge QDs bandgap by tensile strain, and its peak energy located at 0.83 eV, corresponding to wavelength 1500 nm, showed the promising potential for applications in near infra-red (NIR) communication. In capacitance-voltage (C-V) characterization, significant hysteresis curve under a 980 nm laser illumination double confirmed that tensile strained Ge QDs with quasi direct-bandgap possess the ability of light absorption.
[1] Jeong-Woo Park., Photodiodes - World Activities in 2011, InTech., 2011.
[2] FInstP, Cyril Hilsum Hon., “The GaAs scene in 1962: the battle with Si,”, Semiconductor Science and Technology, 28(1), p15028, 2013.
[3] Henry Kressel, “Semiconductor Lasers and Herterojunction LEDs,” p31, 1977.
[4] J. Liu , X. Sun , L. C. Kimerling and J. Michel, “Towards a Ge-based laser for CMOS applications,” Proc. 5th IEEE Int. Conf. Group IV Photon, p16, Sorrento, Italy, 2008.
[5] Carroll, L., Friedli, P., “Direct-gap gain and optical absorption in Germanium correlated to the density of photoexcited carriers, doping, and strain,” Phys. Rev. Lett., 109(5), p057402, 2012.
[6] J. Liu, L. C. Kimerling, J. Michel, “Monolithic Ge-on-Si lasers for large-scale electronic-photonic integration,” Semicond. Sci. Technol., 27(9), p094006, 2012.
[7] M Gomilšek, “Whispering gallery modes,” p3, 2011.
[8] Chen, K. H., Wang, C. C., George, T., & Li, P. W., “The pivotal role of SiO formation in the migration and Ostwald ripening of Ge quantum dots,” Phys. Rev. Lett., 105, p122102, 2014.
[9] Chen, K. H., Wang, C. C., George, T., & Li, P. W., “The role of Si interstitials in the migration andgrowth of Ge nanocrystallites under thermal annealing in an oxidizing ambient,” Nanoscale Research Letters, 9, p339, 2014.
[10] Cao, H., Xu, J. Y., Xiang, W. H., Ma, Y., Chang, S. H., Ho, S. T., & Solomon, G. S. , “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett., 76, p3519, 2000.
[11] Chien, C. Y., Chang, Y. J., Chen, K. H., Lai, W. T., George, T., Scherer, A., & Li, P. W., “Nanoscale, catalytically enhanced local oxidation of silicon-containing layers by ‘burrowing’ Ge quantum dots,” Nanotechnology, 22, p435602, 2011.
[12] Bernard, James E, Alex Zunger, “Strain energy and stability of Si-Ge compounds, alloys, and superlattices,” Physical Review B, 44(4), p663, 1991.
[13] Yuan, F., Jan, S. R., Maikap, S., Liu, Y. H., Liang, C. S., & Liu, C. W., “Mechanically strained Si-SiGe HBTs,” Electron Device Letters, IEEE, 25(7), p483, 2004.
[14] Semiconductor, Virginia, “General Properties of Si, Ge, SiGe, SiO2 and Si3N4,” p2, 2002.
[15] 王慶奇,“利用奈米圖案技術形成三維鍺量子點陣列的研製及其特性分析”,碩士論文,國立中央大學,民國100年。
[16] Saeed, S., de Weerd, C., Stallinga, P., Spoor, F. C., Houtepen, A. J., Siebbeles, L. D., & Gregorkiewicz, T., “Carrier multiplication in germanium nanocrystals,” Light: Science & Applications, 4(2), p251, 2015.
[17] Claudiu M. Cirloganu, Lazaro A. Padilha, Qianglu Lin, Nikolay
S. Makarov,Kirill A. Velizhanin, Hongmei Luo, Istvan Robel, Jeffrey M. Pietryga & Victor I. Klimov, “Enhanced carrier multiplication in engineered quasi-type-II quantum dots,” Nature communications, 5, 2014.
[18] Lin, J. H., Yang, H. B., Qin, J., Zhang, B., Fan, Y. L., Yang, X. J., & Jiang, Z. M., “Strain analysis of Ge/Si (001) islands after initial Si capping by Raman spectroscopy,” Journal of applied physics, 1018, p083528, 2007.
[19] Huo, Y., Lin, H., Rong, Y., Makarova, M., Kamins, T. I., Vuckovic, J., & Harris, J. S., “Direct band gap tensile-strained Germanium,” Conference on Lasers and Electro-Optics., Optical Society of America, 2009.
[20] T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu and H.-H. Tseng., “Strain-enhanced photoluminescence from Ge direct transition,” Applied Physics Letters, 96(21), p211108, 2010.
[21] Lee, S. W., Kim, T. G., Hirakawa, K., Kim, J. S., Choi, S. H., & Cho, H. Y.,
“Lateral photoconductivity and bound states of self-assembled Ge/Si quantum
dots,” Nanotechnology, 18(10), p105403, 2007.
[22] Lu, Qi, Qiandong Zhuang, and Anthony Krier., “Gain and Threshold Current in Type II In (As) Sb Mid-Infrared Quantum Dot Lasers,” Photonics, 2(2), p414, 2015.
[23] 陳弘斌, “鍺/矽/鍺多層量子點結構之光學特性研究”,碩士論文,國立中央大學,民國100年。
[24] Baier, T et al., “Type-II band alignment in Si/Si 1− x Ge x quantum wells from photoluminescence line shifts due to optically induced band-bending effects: experiment and theory,” Physical Review B, 50(20), p15191, 1994.
[25] Schaevitz, R. K., Ly-Gagnon, D. S., Roth, J. E., Edwards, E. H., & Miller, D. A. B., “Indirect absorption in germanium quantum wells,” AIP Advances, 1(3), p032164, 2011.
[26] Ryu, M. Y., Harris, T. R., Yeo, Y. K., Beeler, R. T., & Kouvetakis, J., “Temperature-dependent photoluminescence of Ge/Si and Ge1-ySny/Si, indicating possible indirect-to-direct bandgap transition at lower Sn content,” Applied Physics Letters, 102(17), p171908, 2013.
[27] Varshni, Y. P., “Temperature dependence of the energy gap in semiconductors,” Physica, 34(1), p149, 1967.
[28] Chien, C. Y., Chang, Y. J., Chang, J. E., Lee, M. S., Chen, W. Y., Hsu, T. M., & Li, P. W., “Formation of Ge quantum dots array in layer-cake technique for advanced photovoltaics,” Nanotechnology, 21(50), p505201, 2010.
[29] Kuo, M. H., Lai, W. T., Hsu, T. M., Chen, Y. C., Chang, C. W., Chang, W. H., & Li, P. W., “Designer germanium quantum dot phototransistor for near infrared optical detection and amplification,” Nanotechnology, 26(5), p055203, 2015.