| 研究生: |
龍定華 Ting-hua Lung |
|---|---|
| 論文名稱: |
焦電型紅外線感應器的光學系統模擬 Pyroelectric infrared sensor of the optical system simulation |
| 指導教授: |
張榮森
Rong-seng Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學研究所碩士在職專班 Executive Master of Optics and Photonics |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 田口實驗計畫法 、直交表 、TracePro 、輻射照度 、焦電型紅外線感應器 |
| 外文關鍵詞: | TracePro, irradiance, orthogonal array, Taguchi method, pyroelectric infrared sensors |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的主要目的是研究焦電型紅外線感應器的光學系統模擬,其中主要是使用TracePro光學模擬軟體,來對焦電型紅外線感應器的光學元件作設計與分析,並以優化產品的感應距離為設計目標。
第一章主要是介紹紅外線的歷史及應用情形,第二章為紅外線理論及焦電型紅外線感應器的簡介。第三章則利用田口實驗計畫法及模擬軟體TracePro來做實驗分析,田口實驗計畫法在參數設計方面將建立設計參數的最佳的組合,採用塑膠透鏡材質、透鏡面積、透鏡焦距、Fresnel透鏡條紋間距、透鏡瞄準位置及透鏡厚度等六個可控制因子,並採用五個水準做參數設計,以提高人體紅外線聚焦在感應器視窗之輻射照度。
田口實驗計畫法L25(56)的直交表設定各項參數,利用TracePro光學模擬軟體進行模擬,並取得25組模擬結果,再將模擬結果利用直交表計算,使用直交表的設計和變異數的分析,找出製程中主要效應分子為何,以及各因子間交互關係對回應值的最佳化,將可有效減少模擬次數,將原本六因子五水準需做15625次模擬簡化為25次,讓設計者可以在較短的時間內得到較佳的設計參數。
原本未經田口實驗計畫法優化的感應器光學系統之設計,經TracePro模擬可得該狀況之輻射照度(Irradiance)為14.613 W/m2;田口實驗計畫法計算後,預測最佳設計參數狀況之輻射照度為52.797 W/m2,輻射照度獲得明顯提升。
The main purpose of this paper is the study of the pyroelectric infrared sensor of the optical system simulation, which is using TracePro optical simulation software, to focus electrical type infrared sensors,optical components for the design and analysis, and to optimize the sensing range of products design goals. The first chapter is to introduce the history and circumstances of the infrared,the second chapter is an introduction to infrared theory and pyroelectric infrared sensor. Chapter III of the Taguchi method and simulation software, TracePro to do experimental analysis will establish the best combination of design parameters, the Taguchi method in the parameter design, the use of plastic lens material, lens size, lens focal length, Fresnel lens fringe spacing, lens aimed at the location and lens thickness of six control factors and the five standards of parameter design, and focus to improve the human infrared sensor window irradiance.Orthogonal array of Taguchi method L25 (56) set the parameters to use tracepro optical simulation software to simulate, and has made 25 sets of simulation results, and then simulation results using orthogonal array calculated using the orthogonal array design and variance analysis to find out why the major effector molecules in the process, as well as interactions between each factor on the response to the value of optimization, can effectively reduce the number of simulations, the original six factors, five standards to be done to the 15 625 simulated simplified to 25, so that the design in a short period of time to get better design parameters.Without the original design of the Taguchi method to optimize the sensor optical system, by TracePro simulation of the status of the radiation intensity (Irradiance) 14.613 W/m2; Taguchi method, to predict the status of best design parameters illumination of the radiation to 52.797 W/m2 irradiance be improved significantly.
1. E.S. Barr, “Historical survey of the early development of the infrared spectral region,” Am. J. Phys., 28, 42 (1960).
2. E.S. Barr, “The infrared pioneers-I. Sir William Herschel,” Infrared Phys., 1, 1 (1961).
3. R.D. Hudson, Infrared System Engineering, Ch.1, John Wiley & Sons Inc., New York (1969).
4. E.S. Barr,“The infrared pioneers-II. Macedonia Melloni,”Infrared Phys., 2, 67 (1962).
5. E.S. Barr,“The infrared pioneers-III. Samuel Pierpont Langley,” Infrared Phys., 3, 195 (1963).
6. R.M. Eisberg, Fundamentals of modern physics, Ch2-3, John Wiley, New York, (1961).
7. W.N. Arnquist, “Survey of early infrared developments,”Proc. Inst. Radio Engrs., 47, 1420 (1959).
8. R.D. Hudson and J.W. Hudson, “The military applications of remote sensing by infrared,” Proc. of the IEEE, 63(1), 104-128 (1975)
9. W.D. Lawson et al., “Preparation and properties of HgTe and mixed crystals of HgTe-CdTe,” J. Phys. Chem. Solids, 9, 325-329 (1959).
10. S. Borrello and H. Levinstein, “Preparation and properties of mercury-doped germanium,” J. of Appl. Phys., 33, 2947-2950, (1962).
11. D. Long and J.L. Schmidt, “Mercury-cadmium telluride and closely related alloys,” in Semiconductors and Semimetals,Academic Press, New York, 5, 175-255 (1970).
12. W.S. Boyle and G.E. Smith, “Charge coupled semiconductor devices”, Bell System Technical Journal, pp.587-593 (1970).
13. M.F. Thompsett, “A pyroelectric thermal imaging camera tube,” IEEE Trans. Elec. Dev., 18, pp1070-1074, (Nov.1972).
14. C.T. Elliot et al., “An integrating detector for serial scan thermal imaging,” Infrared Physics 22, 31-42 (1982)
15. W. Parrish et.al., “Characterization of a 32x32 InSb hybrid focal plane”, IEDM Technical Digest, pp. 513-516(Dec. 1978).
16. Infrared Imaging News, 3(2), p.5, Maxtech International,Inc. (1997).
17. Infrared Imaging News, 5(2), p.1-3, Maxtech International,Inc. (1999).
18. I.J. Spiro, “The optimization of an optical missile guidance tracker,” Appl. Opt., 8, 1365-1371 (1969).
19. S.Ballard, and W.L. Wolfe, “Recent developments in infrared technology,” Appl. Opt., 1(5), 547-557 (1962).
20. L.B. Carpenter et al., “Long path detection of atmospheric contaminanta,” U.S. Patent 2930893, (1960).
21. R.P. Madding, “High-voltage switchyard thermography case study,” in Thermosense XX, Proc. SPIE 3361, 94-99 (1996).
22. H. Kaplan, “Thermal signatures of electronics modules for automatic testing,” Proceedings of the 5th IR information exchange, 39-43 (1985).
23. P. Mill, “Technical quality control and transdisciplinary testing requirements of building enclosures,” Proceedings of the 5th IR information exchange, 31-47 (1985).
24. L.J. Anderson,“Energy conservation with thermography,” Proceedings of the 3rd IR information exchange, 61-71(1976).
25. G.J. Weil, “Computer-aided IR analysis of bridge deck delaminations,” Proceedings of the 5th IR information exchange, 85-93 (1985).
26. E.R. Hauser et al., “Thermographic evaluation and heat flow analysis of clothing insulation and garment design,”Proceedings of the 4th IR information exchange, C9-C19 (1978).
27. C.G. Soderstorm, “A new industrial IR line scanner for process monitoring and control,” Proceedings of the 5th IR information exchange, 55-63 (1985).
28. M.V. Bennett and I. Matthews, “A life saving uncooled IR camera for use in firefighting applications,” in Infrared Technology and Applications XXII, Proc. SPIE 2744, 549-554 (1996).
29. K. Morinaka et al., “Human information sensor,” Sensor and Actuators, A34, 1-8 (1998).
30. P. Ryser, “Optical systems for security engineering,” Optical Engineering, 34(9), 2670-2674 (1995).
31. Nippon Ceramic Corporation, Pyroelectric infrared sensor technical information, Japan (1992).
32. J. Grant, Intruder Alarms, pp.112-159, Paramount Publishing Ltd., UK (1996).
33. P. Burry, Fire Detection and Alarm Systems, pp.19-84, Paramount Publishing Ltd., UK (1996).
34. The Infrared Observer, 3(6) AGA Infrared Systems AB (1980).
35. F. Cascetta, “An evaluation of the performance of an infrared tympanic thermometer,” Measurement, 16, 239-246 (1995).
36. D. McCosh, “Second sight,” Popular Science, 78-80 (Oct.1998).
37. Thermal Imaging Solutions, TI NIGHTSIGHT interactive explorer (1996)
38. L. A. Klein et al.,“Evaluation of traffic detection technologies for IVHS,” in Intelligent Vehicle Highway Systems, Proc. SPIE 2344, 42-53 (1994).
39. D. Lubin and A.S. Simpson, “The longwave emission signature of urban pollution: Radiometric FTIR measurement,” Geophys. Res. Lett. 21, 37 (1994).
40. P.J. Thomas and Nixon O, “Near-infrared forest fire detection concept,” Applied Optics 32(27), 5348-5355 (1993).
41. H.H. Aumann and K. Overoye, “The atmospheric infrared sounder (AIRS) on the earth observing system: In-orbit radiometric and spectral calibration,” in Infrared Technology and Applications XXII, Proc. SPIE 2744, 712-721 (1996).
42. L.D. Favro et al., “Fast infrared measurements of the thermal diffusivities of anisotropic materials,” in Thermosense XX, Proc. SPIE 3361, 248-253 (1996).
43. R.L. Johnson et al.,“Laser evaluation utilizing minicomputer based image analysis,” Proceedings of the 4th IR information exchange, D37-D46 (1978).
44. M.W. Zemansky, Heat and Thermodynamics, Ch.4, 4th edition, McGraw-Hill (1957).
45. W.L. Wolfe and G.J. Zissis, The Infrared Handbook, Ch.2, The Infrared Information and Analysis Center, ERIM (1978).
46. J.H. Taylor and H.W. Yates, “Atmospheric transmission in the infrared,” J. Opt. Soc. Am., 47, 223-226 (1957).
47. J.N. Howard, “The transmission of the atmosphere in the infrared,” Proc. Inst. Radio Engrs., 47, 1451 (1959).
48. J.N. Howard and J.S. Garing, “The transmission of the atmosphere in the infrared - a review,” Infrared Physics 2,155 (1962)
49. P.J. Wyatt et al.,“The infrared transmission of water vapor” Appl. Opt., 3, 299 (1964).
50. V.R. Stull et al., “The infrared transmission of carbon dioxide,” Appl. Opt., 3, 243 (1964).
51. A.Arnulf et al., “Transmission by haze and fog in the spectral region 0.35 to 10 microns,” J. Opt. Soc. Am., 47,491 (1957).
52. R.D. Hudson, Infrared System Engineering, Ch.2, John Wiley & Sons Inc., New York (1969).
53. M.J. Riedl, Optical Design Fundamentals for Infrared Systems, Ch.4, SPIE Optical Engineering Press, Washington (1995).
54. W.L. Wolfe, Introduction to Infrared System Design, Ch.11,SPIE Optical Engineering Press, Washington (1996).
55. M. Herzberger and C.D. Salzberg, “Refractive indices of infrared optical materials and color-correction of infrared lenses,” J. Opt. Soc. Am., 52, 420 (1962).
56. R.D. Hudson, Infrared System Engineering, Ch.5, John Wiley & Sons Inc., New York (1969).
57. W.L. Wolfe and G.J. Zissis, The Infrared Handbook, Ch.7, The Infrared Information and Analysis Center, ERIM (1978).
58. B. Canata, “Microbolometer arrays take the heat,” Lasers & Optronics, 13-14, (Apr. 1997).
59. R.N. Claytor, Fresnel lens with aspiteric grooves,” U.S.Patent 4787722, (1988).
60. Fresnel Technologies Inc., Fresnel lenses for infrared wavelengths (1995).
61. T. Werner et al., “Microlens array for staring infrared imager,” in Miniature and Micro-Optics: Fabrication and System Applications, Proc. SPIE 1544, 46-57 (1991).
62. M. Ferstl et al., “AR-coated arrays of binary lenses for interconnection networks at 1.5m,” in Miniature and Micro-Optics and Micromechanics, Proc. SPIE 1992, 90-101(1993).
63. M.B. Stern and T.R. Jay, “Dry etching — path to coherent refractive microlens arrays,” in Miniature and Micro-Optics and Micromechanics, Proc. SPIE 1922, 283-292 (1993).
64. T. Stone and N. George, “Hybrid diffractive-refractive lenses and achromats,” Applied Optics, 27, 2960-2971(1988).
65. G. Blough and G.M. Morries,“Hybrid lenses offer high performance at low cost,” Laser Focus World, 67-74 (1995).66. E. Hecht and A.Zalac, Optic,Ch.10, Addison-Wesley Publication Company,(1974).
67. Military Standard, “Thermal imaging devices, performance parameters of,” MIL-STD-1859, Department of Defense, WA,DC (1986)
68. D.A. Scribner et al., “Infrared focal plane array technology,” Proc. of IEEE, 79(1), 66-85 (1991).
69. W.D. Rogatto, Electro-Optical Components, Ch.4, ERIM and SPIE Optical Engineering Press (1993).
70. P.W. Kruse and D.D. Skatrud, Uncooled Infrared Imaging arrays and Systems, Ch.2-3, Academic Press, New York (1997).
71. R.W. Whatmore, “Pyroelectric devices and materials,” Rep. Prog. Phys., 49, 1335-1386 (1986).
72. 李宗昇,”低解析度紅外線影像系統之家庭保全應用”,國立交通大學光電工程研究所,1999。
73. 陳婉婷,”反射式紅外線光學系統的模擬研究”,國立高雄應用科技大學光電與通訊工程研究所,2008。
74. 林志勳,”應用田口法開發LED燈具設計”,國立中央大學光電科學與工程學系,2009。
75. 何冠儒,”發光二極體驅動電路之品質改善”, 國立中央大學光電科學與工程學系,2012。