| 研究生: |
江沂庭 Yi-ting Chiang |
|---|---|
| 論文名稱: |
高溫古生菌Sulfolobus acidocaldarius DSM639 之重組蛋白Ketol-acid reductoisomerase之生化特性分析 Characterization of recombinant ketol-acid reductoisomerase from thermoacidophilic archaeon Sulfolobus acidocaldarius DSM639 |
| 指導教授: |
黃雪莉
Shir-ly Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 重組蛋白 、高溫古生菌 |
| 外文關鍵詞: | ketol-acid reductoisomerase, Sulfolobus |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Sulfolobus acidocaldarius DSM639為一株嗜熱、嗜酸之古生菌,能生長於55-85 ˚C之溫泉與酸性環境(pH 2-3),其適應極端環境之策略能對酵素和應用具研發潛力。本實驗先前研究中,經由蛋白質體學分析此菌之分泌蛋白體,鑑定到多種外泌的酵素,Ketol-acid reductoisomerase (KARI, EC 1.1.1.86)為其中之一,此酵素在細胞內參與三種胺基酸:纈胺酸、亮氨酸及異亮氨酸之生物合成路徑,另外也被專利保護下應用在工業發酵生成丁醇作為生質能源,因此本研究將此種酵素利用大腸桿菌大量表達,並進行生化特性分析以探討應用潛力;基因體序列分析本酵素乃以GTG為起始密碼子,因古生菌具有多種罕見起始密碼子,為了更進一步證實本酵素轉譯是由GTG開始,進行N端定序佐證之。結果依據核甘酸和N端定序結果推測KARI轉譯是由GTG開始。此外,KARI酵素活性測試發現重組酵素在65 ˚C、pH 7.3下有最高活性,經初步純化比活性值為3.5 μmole/min/mg,對菸鹼醯胺腺嘌呤二核苷酸磷酸(NADPH)之Km為14 μM。
Sulfolobus acidocaldarius DSM639 is a thermoacidophilic crenarchaeon which can grow in hot springs at 55-85 ˚C and acidic environments (pH 2-3). As we facing the extreme living environmental challenge now and in near future, the extreme adaptation genes, extremozymes and strategies from archaea may help us to adapt in hostile environments. In previous study, ketol-acid reductoisomerase (KARI, EC 1.1.1.86) was identified as one of numerous extra-cellular proteins of S. acidocaldarius DSM639 by LC/MS/MS. This enzyme not only participates in valine, leucine and isoleucine biosynthesis pathway, but also can be expressed in recombinant organism for bio-butanol production. In this study, KARI with GTG as start codon was overexpressed by recombinated E. coli system, and the biochemical properties of KARI were also explored. The results of N-terminal sequencing and DNA sequencing verified that KARI was expressed by using GTG as start codon in E. coli. It suggested that GTG can be used as start codon for protein expression in both archaeobacteria and E. coli. Furthermore, the KARI enzyme assay showed that optimal temperature and pH value of recombinant KARI was 65 ˚C and pH 7.3 in 100 mM HEPES-potassium containing 10 mM MgCl2 condition. The specific activity of purified enzyme was 3.5 μmole/min/mg, and the Km was 14 μM responding to co-substrate: NADPH.
陳珮欣,2008。以蛋白質體學研究嗜超高溫古生菌Aeropyrum pernix K1分泌蛋白體。國立中央大學系統生物與生物資訊研究所碩士論文。
劉婷婷,2010。以蛋白質體學研究高溫古生菌Sulfolobus acidocaldarius DSM639之胞外蛋白體。國立中央大學系統生物與生物資訊研究所碩士論文。
Arfin, S. T., Umbarger, H. E., 1968. Purification and properties of the acetohydroxy acid isomeroreductase of Salmonella typhimurium. The journal of Biofogical Chemistry, 244, 5, 1118-1127.
Atsumi, S., Hanai, T., Liao, J. C., 2008. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 451, 86-89.
Atsumi, S., Wu, T. Y., Eckl, E. M., Hawkins, S. D., Buelter, T., Liao, J. C., 2010. Engineering the isobutanol biosynrhetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol, 85, 651-657.
Baker, E. N., Hubbard, R. E., 1984. Hydrogen bonding in globular proteins. Progress in Biophysics and Molecular Biology, 44, 97-179.
Barns, S. M., Delwiche, C. F., Palmer, J. D., Pace, N. R., 1996. Perspectives on Archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci U S A ,93, 17, 9188-9193.
Barry, R. C., Alsaker, B. L., Robinson-Cox, J. F., Dratz, E. A., 2003. Quantitative evaluation of sample application methods for semipreparative separations of basic proteins by two-dimensional gel electrophoresis. Electrophoresis, 24, 3390-3404.
Ben-Bassat, A., Bauer, K., Chang, S. Y., Myambo, K., Boosman, A., Chang, S., 1987. Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. Journal of bacteriology, 169, 2, 751-757.
Beranova, G. S., 2003. Proteome analysis by two-dimensional gel electrophoresis and mass spectrometry: strengths and limitations. Anal. Chem, 22, 273-281.
Blattner, F. R., Plunkett, G., Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirkpatrick, H. A., Goeden, M. A., Rose, D. J., Mau, B., Shao, Y., 1997. The complete genome sequence of Escherichia coli K-12. Science, 277, 5, 1453-1462.
Blumer-Schuette, S. E., Kataeva, I., Westpheling, J., Adams, M. W., Kelly, R. M., 2008. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol.
Brock, T. D., Brock K. M., Belly, R. T., Weiss, R. L., 1972. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Miceobiol, 84, 54-68.
Chen, L., Brugger, K., Skovgard, M., Redder, P., She, O., Torarinsson, E., Greve, B., Awayez, M., Zibat, A., Klenk, H. P., Garrett, R. A., 2005. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol, 187, 4992-4999.
Chong, P. K., Burja, A. M., Radianingtyas, H., Fazeli, A., Wright, P. C., 2007. Proteome and Transcriptional Analysis of Ethanol-Grown Sulfolobus solfataricus P2 Reveals ADH2, a Potential Alcohol Dehydrogenase. Journal of proteome research, 6, 3985-3994.
Chong, P. K., Wright, P. C., 2005. Identification and characterization of the Sulfolobus solfataricus P2 proteome. Journal of proteome research, 4, 1789-1798.
Creighton, T. E., 1993. Protein: Structure and molecular properties (2nd ed), W. H. Freeman and Company.
Desvaux, M., Hebraud, M., Talon, R., Henderson, I. R., 2009. Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends in Microbiology, 17, 4, 139-145.
Dickinson, J. R., Harrison, S. J., Hewlins, M. J. E., 1998. An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. Journal of Biological Chemistry, 273, 30, 25751-25756.
Dumax, R., Biou, V., Halgand, F., Douce, R., Duggleby, R. G., 2001. Enzymology, structure, and dynamics of acetohydroxy acid isomeroreductase. Acc. Chem. Res. 34, 399-408.
Ellen, A. F., Albers, S. V., Huibers, W., Pitcher, A., Hobel, C. F. V., Schwarz, H., Folea, M., Schouten, S., Boekema, E. J., Poolman, B., Driessen, A. J. M., 2009. Proteomics analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles, 13, 67-79.
Ellen, A.F., F., Albers, Driessen, A. J. M., 2010. Comparative study of extracellular proteome of Sulfolobus species reveals limited secretion. Extremophiles, 14, 87-98.
Epelbaum, S., LaRossa, R. A., VanDyk, T. K., Elkayam, T., Chipman, D. M., Barak Z., 1998. Branched-chain amino adid biosynthesis in Salmonella typhimurium: a quantitative analysis. J. Bacteriol., 180, 16, 4056-4066.
Elkins, J.G., Podar, M., Graham, D. E., Makarova, K. S., Wolf, Y., Randau, L., Hedlund, B. P., Brochier-Armanet, C., Kunin, V., Anderson, I., Lapidus, A., Goltsman, E., Barry, K., Koonin, E. V., Hugenholtz, P., Kyrpides, N., Wanner, G., Richardson, P., Keller, M. & Stetter, K.O., 2008. A korarchaeal genome reveals insights into the evolution of the archaea. Proc Natl Acad Sci U S A 105, 23, 8102-8107.
Gao, B. & Gupta, R.S., 2007. Phylogenomic analysis of proteins that are distinctive of archaea and its main subgroups and the origin of methanogenesis. BMC Genomics, 8, 86.
Gardy, J. L. & Brinkman, F. S., 2006. Methods for predicting bacterial protein subcellular localization. Nat Rev Microbiol , 4, 10, 741-751.
Huber, H., Hohn, M. J., Rachel, R., Fuchs, T., Wimmer, V. C. & Stetter, K. O., 2002. A new phylum of archaea represented by a nanosized hyperthermophilic symbiont. Nature, 417, 6884, 63-67.
Kozak, M., 1989. The scanning model for translation: An update. Journal ofCcell Biology, 108, 229-241.
Kozak, M., 1999. Initiation of translation in prokaryotes and eukaryotes. Gene, 234, 187-208.
Kirino, H., Aoki, M., Aoshima, M., Hayashi, Y., Ohba, M., Yamagishi, A., Wakagi, T., Oshima, O.,1994. Hydrophobic interaction at the subunit interface contributes to the thermostability of 3-isopropylmalate dehydrogenase from an extreme thermophile, Thermus thermophilus. Eur. J. Biochem., 220, 275-281.
Langen, H., Takacs, B., Evers, S., Berndt, P., Lahm, H. W., Wipf, B., Gray, C., Fountoulakis, M., 2000. Two-dimensional map of the proteome of Haemophilus influenza. Electrophoresis, 21, 411-429.
Lawyer, F.C., Stoffel, S., Saiki, R. K., Myambo, K., Drummond, R., Gelfand, D. H., 1989. Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus. J Biol Chem, 264, 6427-6437.
Leyval, D., Uy, D., Delaunay, S., Goergen, J. L., Engasser J. M., 2003. Characterisation of the enzyme activities in volved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. Journal of Biotechnology. 104, 241-252.
Li, W. F., Zhou, X. X., Lu, P., 2005. Structural features of thermozymes. Biotechnol Adv, 23, 4, 271-281.
Liao, D. I., Nelson, M. J., Bramucci, M. G., 2011. Fermentive production of isobutanol using highly active ketol-acid reductoisomerase enzymes. Patent.
Link, A. J., Robison, K., Church, G. M., 1997. Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12. Electrophoresis, 18, 1259-1313.
Lynd, L. R., Laser, M. S., Bransby, D., Dale, B. E., Davison, B., Hamilton, R., Himmel, M., Keller, M., McMillan, J. D., Sheehan, J., Wyman, C.E., 2008. How biotech can transform biofuels. Nat Biotechnol ,26, 2, 169-172.
Moll, R., Schafer, G., 1988. Chemiosmotic H+ cycling across the plasma membrane of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. FEB, 232, 2, 359-363.
Prangishvili, D. A., Vashakidze, R. P., Chelidze, M. G., Gabriadze, I. Y., 1985. A restriction endonuclease SuaI from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. FEBS Letters, 192, 57-60.
Rabe, K. S., Kiko, K., Niemeyer, C. M., 2008. Characterization of the Peroxidase activity of CYP119, a thermostable P450 from Sulfolobus acidocaldarius. ChemBioChem, 9, 420-425.
Ring, G. & Eichler, J., 2004. Extreme secretion: protein translocation across the archael plasma membrane. J Bioenerg Biomembr, 36, 1, 35-45.
Russell, R.J. & Taylor, G.L.,1995. Engineering thermostability: lessons from thermophilic proteins. Curr Opin Biotechnol , 6, 4, 370-374.
Takayanagi, S., Kawasaki, H., Sugimori, K., Yamada, T., Sugai, A., Ito, T., Yamasato, K., Shioda, M., 1996. Sulfolobus hakonensis sp. Nov., a novel species of acidothermophilic archaeon. Int J Syst Bacteriol, 46, 377-382.
Saleh, M.I., Meullenet, J. F., Siebenmorgen, T. J., 2008. Development and valida¬tion of prediction models for rice surface lipid content and color parameters using near-infrared spectroscopy: A basis for predicting rice degree of milling. Cereal Chem. 85, 6, 787-791.
Santoni, V., Molly, M., Rabilloud, T., 2000. Electrophoresis, 21.
Sergeyenko, T. V., Los, D. A., 2000. Identification of secreted proteins of the cyanobacterium Synechocystis sp. strain PCC 6803. FEMS Microbiol. Lett., 193, 213-216.
Saier, M. H., Jr., 2006. Protein secretion and membrane insertion systems in gram-negative bacteria. J Membr Biol , 214, 2, 75-90.
Tjalsma, H., Antelmann, H., Jongbloed, J. D., Braun, P. G., Darmon, E., Dorenbos, R., Dubois, J. Y., Westers, H., Zanen, G., Quax, W. J., Kuipers, O.P., Bron, S., Hecker, M., Van Dijl, J. M., 2004. Proteomics of protein secretion by Bacillus subtilis: separating the "secrets" of the secretome. Microbiol Mol Biol Rev, 68, 2, 207-233.
Vieille, C., and Zeikus, J. G., 1996. Thermozymes: identifying
molecular determinants of protein structural and functional stability. Tibtech, 14, 183-190.
Wrba, A., Schweiger, A., Schultes, V., Jaenicke, R., 1990. Extremely thermostable D-glyceraldehyde-3-phosphate dehydrogenase from the Eubacterium Thermotoga maritimat. Biochemistry , 29, 7584-7592.
Wang, M., Yafremava, L.S., Caetano-Anolles, D., Mittenthal, J.E., Caetano-Anolles, G.,2007. Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world. Genome Res, 17, 11, 1572-1585.
Woese, C.R., Kandler, O. & Wheelis, M.L.,1990. Towards a natural system of organisms: proposal for the domains archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A , 87, 12, 4576-4579.
Xing, R., Whitman, W. B., 1994. Purification and characterization of the oxygen-sensitive acetohydroxy acid synthase from the archaebacterium Methanococcus aeolicus. J. Bacteriol. 176, 1207-1213.
Yamazaki, S., Yamazaki, J., Nishijima, K., Otsuka, R., Mise, M., Ishikawa, H., Sasaki, K., Tago, S.I., Isono, K., 2006. Proteome analysis of an aerobic hyperthermophilic crenarchaeon, Aeropyrum pernix K1. Molecular & Cellular Proteomics, 5.5, 811-823.
Zhou, M., Boekhorst, J., Francke, C., Siezen, R., 2008. Locate P: Genome-scale subcellular-location predictor for bacterial proteins. BMC Bioinformatics, 9,173,