| 研究生: |
游沅沅 Yuan-yuan Yu |
|---|---|
| 論文名稱: |
表面處理二氧化鈦奈米結構增強其生物感測及光催化特性之研究 Surface modified TiO2 nanostructures with enhanced bio-sensitivity and photocatalytic properties |
| 指導教授: |
李勝偉
Sheng-wei Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 二氧化鈦 、奈米管 、奈米纖維 、超臨界流體 、抗體介質合成 、光催化性質 、生物感測 |
| 外文關鍵詞: | TiO2, Nanotubes, Nanofibers, Supercritical fluid, Antibody-mediated, Photocatalytic, Bio-senstivity |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化鈦 ( TiO2 ) 在觸媒、感測器、太陽能電池、生醫材料、表面自潔等皆有廣泛的研究。不同形貌結構與表面修飾處理對於提升性質與擴展二氧化鈦應用扮演著相當重要的角色。本研究第一部分探討超臨界流體處理 ( ScCO2 fluid cleaning ) 對於一維二氧化鈦奈米管陣列 ( TiO2 nanotubes ) 表面性質影響。實驗結果顯示不同管徑二氧化鈦奈米管陣列皆從親水性轉變成疏水性。藉由XPS分析表面鍵結,發現其碳-氫鍵結 ( C-H functional groups ) 訊號明顯上升。為深入探討其機制,比較於退火後所形成銳鈦礦相 ( anatase phase ) 二氧化鈦奈米管陣列表面親疏水性。超臨界流體處理後,退火後二氧化鈦奈米管陣列表面所產生之碳-氫鍵結明顯較少,所量測之接觸角上升幅度下降。可得知二氧化碳超臨界流體對於二氧化鈦奈米管陣列表面鍵結改變具有重要影響。並藉由這樣的特性結合超臨界流體處理與紫外光線照射,使二氧化鈦奈米管陣列表面擁有良好光感測性,形成一可逆轉換浸潤性材料。
在本論文的第二部分我們以電紡絲技術製備表面親水性一維二氧化鈦奈米纖維 ( TiO2 nanofibers ) ,結合生物分子抗體 ( Antibody ) 作為介質,成功以一種無毒且簡易的方式製備出高均勻性的銀奈米粒子修飾-二氧化鈦奈米纖維 ( Ag-TiO2 ) 異質結構。根據實驗結果顯示,以抗體介質合成銀修飾二氧化鈦奈米纖維對於提升光催化活性與感測性有顯著的影響。銳鈦礦與金紅石 ( rutile ) 混和相之Ag-TiO2奈米纖維,在光催化下具有高效能的染料降解效率。並進一步證實二氧化鈦奈米纖維在適當條件下具有過氧化物酶特性 ( peroxidase-like activity ) 能間接偵測葡萄糖濃度。實驗結果顯示修飾過後Ag-TiO2奈米纖維良好的光催化與生物親和力大幅提升了葡萄糖感測靈敏度。
Titanium oxide (TiO2) has been widely applied in photocatalysts, sensors, solar cells, biomaterials, self-cleaning and so on. The surface morphology and surface chemical modification play important role in the properties of TiO2. This study employed a supercritical-CO2-fluid (ScCO2) cleaning process to modify the chemical properties of anodic TiO2 nanotubes surface. We found that ScCO2-treated TiO2 nanotubes can effectively change their surface wettability as a result of photo-oxidation of C-H functional groups formed on the TiO2 surface. In addition, the crystal structure of TiO2 nanotubes transformed from amorphous phase to anatase after annealing at 450 °C for 2 hours. The C-H functional groups of annealed TiO2 nanotubes were significantly less than amorphous TiO2 nanotubes after the ScCO2 cleaning process. We demonstrated a switchable superhydrophilicity of ScCO2-treated anodic TiO2 nanotubes with UV-light irradiation.
In the following, TiO2 nanofibers with different size and crystal structures have been synthesized by electrospinning and further decorated with silver nanoparticles through antibody-mediated synthesis. The study indicates that Ag nanoparticles are uniform deposited on TiO2 nanofibers. Ag-TiO2 nanofibers possessed superb photocatalytic activity for the degradation of Rhodamine B ( RhB ) dye. This study also demonstrates that TiO2 nanofibers possess intrinsic peroxidase-like activity in suitable condition. Ag-TiO2 nanofibers show excellent catalytic performances and good biocompatibility so that they can be used a colorimetric biosensor for glucose detection.
[1] A.A. Ismail, D.W. Bahnemann, "Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms", Journal of Materials Chemistry, 21 (2011) 11686.
[2] A.L. Linsebigler, G. Lu, J.T. Yates Jr, "Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results", Chem. Rev., 95 (1995) 735-758.
[3] S.-D. Mo, W. Ching, "Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite", PhRvB, 51 (1995) 13023-13032.
[4] V.C. Fuertes, C.F. Negre, M.B. Oviedo, F.P. Bonafe, F.Y. Oliva, et al., "A theoretical study of the optical properties of nanostructured TiO2", Journal of physics. Condensed matter : an Institute of Physics journal, 25 (2013) 115304.
[5] A. Mills, S. Le Hunte, "An overview of semiconductor photocatalysis", J. Photochem. Photobiol. A: Chem., 108 (1997) 1-35.
[6] J.S. Lee, J. Jang, "Hetero-structured semiconductor nanomaterials for photocatalytic applications", Journal of Industrial and Engineering Chemistry, 20 (2014) 363-371.
[7] B. Weng, S. Liu, Z.-R. Tang, Y.-J. Xu, "One-dimensional nanostructure based materials for versatile photocatalytic applications", RSC Advances, 4 (2014) 12685.
[8] Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, et al., "Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires", Nano Lett., 2 (2002) 717-720.
[9] B. Liu, E.S. Aydil, "Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells", Journal of the American Chemical Society, 131 (2009) 3985-3990.
[10] J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, "Smooth anodic TiO2 nanotubes", Angew. Chem. Int. Ed. Engl., 44 (2005) 7463-7465.
[11] N. Wu, J. Wang, D.N. Tafen, H. Wang, J.-G. Zheng, et al., "Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts", Journal of the American Chemical Society, 132 (2010) 6679-6685.
[12] C. Xiong, K.J. Balkus, "Fabrication of TiO2 nanofibers from a mesoporous silica film", Chemistry of materials, 17 (2005) 5136-5140.
[13] A. Sclafani, J. Herrmann, "Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions", The Journal of Physical Chemistry, 100 (1996) 13655-13661.
[14] J. Gong, Y. Li, Z. Hu, Z. Zhou, Y. Deng, "Ultrasensitive NH3Gas Sensor from Polyaniline Nanograin Enchased TiO2 Fibers", The Journal of Physical Chemistry C, 114 (2010) 9970-9974.
[15] J.M. Skoner, K.T. Pitman, "Facial Plastic and Reconstructive Surgery, Third Edition", Head Neck, (2010).
[16] A.K. Kafi, G. Wu, A. Chen, "A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays", Biosens. Bioelectron., 24 (2008) 566-571.
[17] S. Huang, G. Schlichthörl, A. Nozik, M. Grätzel, A. Frank, "Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells", The Journal of Physical Chemistry B, 101 (1997) 2576-2582.
[18] M. Grätzel, "Photoelectrochemical cells", Nature, 414 (2001) 338-344.
[19] S. Ardo, G.J. Meyer, "Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces", Chemical Society reviews, 38 (2009) 115-164.
[20] L. Spanhel, M. Haase, H. Weller, A. Henglein, "Surface modification and stability of strong luminescing CdS particles", Journal of the American Chemical Society, 109 (1987) 5649-5655.
[21] G. Liu, L. Wang, H.G. Yang, H.-M. Cheng, G.Q. Lu, "Titania-based photocatalysts—crystal growth, doping and heterostructuring", Journal of Materials Chemistry, 20 (2010) 831.
[22] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, "Visible-light photocatalysis in nitrogen-doped titanium oxides", Science, 293 (2001) 269-271.
[23] R. Nakamura, T. Tanaka, Y. Nakato, "Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes", The Journal of Physical Chemistry B, 108 (2004) 10617-10620.
[24] N. Serpone, "Is the band gap of pristine TiO2 narrowed by anion-and cation-doping of titanium dioxide in second-generation photocatalysts?", The Journal of Physical Chemistry B, 110 (2006) 24287-24293.
[25] R.J. Good, "A Thermodynamic Derivation of Wenzel's Modification of Young's Equation for Contact Angles; Together with a Theory of Hysteresis1", Journal of the American Chemical Society, 74 (1952) 5041-5042.
[26] G.K. Mor, M.A. Carvalho, O.K. Varghese, M.V. Pishko, C.A. Grimes, "A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination", J. Mater. Res., 19 (2004) 628-634.
[27] S. Yang, Z. Lu, S. Luo, C. Liu, Y. Tang, "Direct electrodeposition of a biocomposite consisting of reduced graphene oxide, chitosan and glucose oxidase on a glassy carbon electrode for direct sensing of glucose", Microchimica Acta, 180 (2013) 127-135.
[28] D. Baird, "Discovering the nanoscale", (2004).
[29] J.H. Yun, Y.H. Ng, C. Ye, A.J. Mozer, G.G. Wallace, et al., "Sodium fluoride-assisted modulation of anodized TiO2 nanotube for dye-sensitized solar cells application", ACS applied materials & interfaces, 3 (2011) 1585-1593.
[30] J. Doshi, D.H. Reneker, "Electrospinning process and applications of electrospun fibers", J. Electrostatics, 35 (1995) 151-160.
[31] G. Taylor, "Disintegration of water drops in an electric field", Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 280 (1964) 383-397.
[32] J. Zhang, B. Han, "Supercritical CO2-continuous microemulsions and compressed CO2-expanded reverse microemulsions", The Journal of Supercritical Fluids, 47 (2009) 531-536.
[33] B. Xie, C.C. Finstad, A.J. Muscat, "Removal of copper from silicon surfaces using hexafluoroacetylacetone (hfacH) dissolved in supercritical carbon dioxide", Chemistry of materials, 17 (2005) 1753-1764.
[34] K.M. Dooley, C.P. Kao, R.P. Gambrell, F.C. Knopf, "The use of entrainers in the supercritical extraction of soils contaminated with hazardous organics", Ind. Eng. Chem. Res., 26 (1987) 2058-2062.
[35] W. Leitner, "Reactions in Supercritical Carbon Dioxide (scCO2)", in: P. Knochel (Ed.) Modern Solvents in Organic Synthesis, Springer Berlin Heidelberg,(1999) 107-132.
[36] C.-Y. Chen, J.-K. Chang, W.-T. Tsai, C.-H. Hung, "Uniform dispersion of Pd nanoparticles on carbon nanostructures using a supercritical fluid deposition technique and their catalytic performance towards hydrogen spillover", Journal of Materials Chemistry, 21 (2011) 19063-19068.
[37] X. Feng, J. Zhai, L. Jiang, "The fabrication and switchable superhydrophobicity of TiO2 nanorod films", Angew. Chem. Int. Ed., 44 (2005) 5115-5118.
[38] N. Sakai, R. Wang, A. Fujishima, T. Watanabe, K. Hashimoto, "Effect of ultrasonic treatment on highly hydrophilic TiO2 surfaces", Langmuir, 14 (1998) 5918-5920.
[39] M. Ma, R.M. Hill, "Superhydrophobic surfaces", Current Opinion in Colloid & Interface Science, 11 (2006) 193-202.
[40] K. Webb, V. Hlady, P.A. Tresco, "Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization", J. Biomed. Mater. Res., 41 (1998) 422.
[41] W. Barthlott, C. Neinhuis, "Purity of the sacred lotus, or escape from contamination in biological surfaces", Planta, 202 (1997) 1-8.
[42] W. Gu, C.P. Tripp, "Reaction of silanes in supercritical CO2 with TiO2 and Al2O3", Langmuir, 22 (2006) 5748-5752.
[43] K. Zhu, T.B. Vinzant, N.R. Neale, A.J. Frank, "Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells", Nano Lett., 7 (2007) 3739-3746.
[44] D. Wang, Y. Liu, B. Yu, F. Zhou, W. Liu, "TiO2 nanotubes with tunable morphology, diameter, and length: synthesis and photo-electrical/catalytic performance", Chemistry of Materials, 21 (2009) 1198-1206.
[45] R.N. Wenzel, "Resistance of solid surfaces to wetting by water", Ind. Eng. Chem., 28 (1936) 988-994.
[46] R.-D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, K. Hashimoto, "Photoinduced surface wettability conversion of ZnO and TiO2 thin films", The Journal of Physical Chemistry B, 105 (2001) 1984-1990.
[47] M. Miyauchi, N. Kieda, S. Hishita, T. Mitsuhashi, A. Nakajima, et al., "Reversible wettability control of TiO2 surface by light irradiation", Surf Sci., 511 (2002) 401-407.
[48] J. Zheng, S. Bao, Y. Guo, P. Jin, "Natural hydrophobicity and reversible wettability conversion of flat anatase TiO2 thin film", ACS applied materials & interfaces, (2014).
[49] D. Miller, M. Biesinger, N. McIntyre, "Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: one possible mechanism for surface contamination?", Surf. Interface Anal., 33 (2002) 299-305.
[50] L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, C. Maccato, et al., "Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems", Nanotechnology, 18 (2007) 375709.
[51] C. Feng, G. Xu, H. Liu, J. Lv, Z. Zheng, et al., "Glucose biosensors based on Ag nanoparticles modified TiO2 nanotube arrays", Journal of Solid State Electrochemistry, 18 (2013) 163-171.
[52] C. Mao, D.J. Solis, B.D. Reiss, S.T. Kottmann, R.Y. Sweeney, et al., "Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires", Science, 303 (2004) 213-217.
[53] R.R. Naik, S.J. Stringer, G. Agarwal, S.E. Jones, M.O. Stone, "Biomimetic synthesis and patterning of silver nanoparticles", Nature materials, 1 (2002) 169-172.
[54] S.S. Bale, P. Asuri, S.S. Karajanagi, J.S. Dordick, R.S. Kane, "Protein-Directed Formation of Silver Nanoparticles on Carbon Nanotubes", Advanced Materials, 19 (2007) 3167-3170.
[55] Y.-Y. Song, T. Yang, J. Cao, Z. Gao, R.P. Lynch, "Protein-mediated synthesis of antibacterial silver nanoparticles deposited on titanium dioxide nanotube arrays", Microchimica Acta, 177 (2012) 129-135.
[56] F.F. Peng, Y. Zhang, N. Gu, "Size-dependent peroxidase-like catalytic activity of Fe3O4 nanoparticles", Chin. Chem. Lett., 19 (2008) 730-733.
[57] S.K. Maji, A.K. Dutta, S. Dutta, D.N. Srivastava, P. Paul, et al., "Single-source precursor approach for the preparation of CdS nanoparticles and their photocatalytic and intrinsic peroxidase like activity", Applied Catalysis B: Environmental, 126 (2012) 265-274.
[58] L. Su, J. Feng, X. Zhou, C. Ren, H. Li, et al., "Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles", Anal. Chem., 84 (2012) 5753-5758.
[59] R.A. Spurr, H. Myers, "Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer", Anal. Chem., 29 (1957) 760-762.
[60] Y. Ma, J.-n. Yao, "Photodegradation of Rhodamine B catalyzed by TiO2 thin films", J. Photochem. Photobiol. A: Chem., 116 (1998) 167-170.
[61] O. Prieto, J. Fermoso, Y. Nuñez, J. Del Valle, R. Irusta, "Decolouration of textile dyes in wastewaters by photocatalysis with TiO2", SoEn, 79 (2005) 376-383.
[62] Y. Jiang, W. Wang, X. Li, X. Wang, J. Zhou, et al., "Enzyme-mimetic catalyst-modified nanoporous SiO2-cellulose hybrid composites with high specific surface area for rapid H2O2 detection", ACS applied materials & interfaces, 5 (2013) 1913-1916.
[63] H. Jiang, Z. Chen, H. Cao, Y. Huang, "Peroxidase-like activity of chitosan stabilized silver nanoparticles for visual and colorimetric detection of glucose", Analyst, 137 (2012) 5560-5564.