跳到主要內容

簡易檢索 / 詳目顯示

研究生: 莊基陽
Chi-Yang Chuang
論文名稱: 不同電流阻障層對氮化鎵發光二極體之光電特性研究
Study of Optoelectronic Characteristics of GaN-based LEDs Using Various Current Blocking Layer
指導教授: 郭政煌
Cheng-Huang Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學研究所碩士在職專班
Executive Master of Optics and Photonics
畢業學年度: 95
語文別: 中文
論文頁數: 56
中文關鍵詞: 發光二極體氮化鎵電流阻障層
外文關鍵詞: LED, GaN, current blocking layer
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 改善電流分佈一直是獲取高效率氮化鎵發光二極體(GaN-based LED)的重要議題之一[1];此外,由於一般結構的發光二極體其p型電極下方所發出的光源,長久以來被本身不透光的材質所遮蔽或反射後被材料所吸收,因此造成光輸出效率的損失。
    本篇論文的主要研究目的即為研究數種不同的電流阻障層(current blocking layer, CBL)結構包括二氧化矽(SiO2)、感應耦合電漿蝕刻(Inductively Coupled Plasma etcher)以及離子佈植(Ion implantation)來改善上述LED元件的問題。
    首先,為了量化這三種表面處理後的變化,我們製作傳輸線模式(Transmission-line model, TLM)的試片進行量測以換算成串聯電阻,依據SiO2、ICP以及離子佈植等不同製程所獲得的最高串聯電阻分別為3.83×106Ω、6.62×105Ω以及8.36×107Ω。經由製作完成的LED元件量測結果顯示,在光輸出功率方面,利用SiO2、ICP以及離子佈植等三種不同製程的CBL分別提升3.7~9.1%、3.2~7.1%以及5.9~7.2%;然而在電性方面,由於p-GaN有效接觸面積減少,此三種製程依序分別使順向偏壓些微升高0.03~0.09V、0.03~0.07V以及0.03~0.09V。
    最後,本論文進一步討論這三種製程所量化的串聯電阻值與CBL結構使用於元件上光輸出功率提升的關係,並探討造成此結果的可能機制。


    Improving non-uniform current spreading to obtain high light-output efficiency is one of most important topics of GaN-based light emitting diodes (LEDs). Moreover, in conventional design of LEDs, light generated under the opaque p-pad metal contact is absorbed or reflected back by the contact and re-absorbed by material. It will reduce the efficiency of light-output.
    The main purpose of this thesis is to investigate three different current blocking layer (CBL) fabrication processes, including deposition of SiO2, Inductively Coupled Plasma (ICP) etching and ion implant to increase the brightness of LEDs.
    For qualification the change of these three surface treatments, tested samples with transmission-line model pattern have been applied to acquire the readings of series resistance. The highest resistance readings are 3.83×106Ω, 6.62×105Ω and 8.36×107Ω for SiO2, ICP and ion implant, respectively. Achievements of LED component using CBL structure, we observe the light output power of three kinds of methods are enhanced by 3.7~9.1%, 3.2~7.1% and 5.9~7.2%, respectively. But in electricity property, each process will make forward voltage a slightly higher 0.03~0.09V, 0.03~0.07V and 0.03~0.09V due to decrease of contact surface of p-GaN.
    Finally, relation between readings of series resistance and improved light output LEDs with CBL structure has been discussed by these evidences and possible mechanism has been induced in the thesis.

    摘 要 I Abstract II 誌 謝 III 一、 緒論 1 1-1 背景與研究動機1 二、 實驗理論4 三、 實驗設計與元件製作9 3-1 實驗架構9 3-2 元件製作流程10 3-3 磊晶片備製11 3-3 磊晶片備製12 3-4 晶粒製作12 3-4-1清洗晶片12 3-4-2定義高台(Mesa)圖型12 3-4-3 電流阻障層(CBL)結構13 3-4-4製作透明導電層(TCL)16 3-4-5 蒸鍍金屬接墊電極17 3-5傳輸線模式(Transmission-line model, TLM)測試片18 3-5-1 電流阻障層(CBL)結構18 3-5-2製作透明導電層(TCL)18 3-5-3 蒸鍍金屬接墊電極19 四、 結果分析與討論25 4-1 以SiO2作為電流阻障層(CBL)25 4-1-1 以TLM 電流-電壓曲線比較阻值變化25 4-1-2元件光電特性比較26 4-2以ICP蝕刻表面作為電流阻障層(CBL)27 4-2-1 以TLM 電流-電壓曲線比較不同阻值變化27 4-2-2元件光電特性比較28 4-3以離子佈植作為電流阻障層(CBL)30 4-3-1 以TLM 電流-電壓曲線比較不同阻值變化30 4-3-2元件光電特性比較31 五、 討論與未來工作47 5-1 討論 47 5-2 未來工作49 參考文獻54

    [1]H. Kim, J.-M. Lee and C. Huh et al. "Modeling of a GaN-based light-emitting diode for uniform current spreading", Appl. Phys. Lett. 77, pp. 1903-1904, 2000
    [2] S. Nakamura and G. Fasol, The Blue Laser Diode, Springer, New York,1997.
    [3] S. Nakamura, T. Mukai and M. Senoh et al. "Thermal annealing effects on p-type Mg-doped GaN films," Jpn. J. Appl. Phys., vol.31, pp.L139-L142, 1992.
    [4] S. Nakamura et al. Journal of Applied Physics 76(12), 8189 (1994).
    [5] S. Nakamura, M. Senoh and N. Iwasa et al.“Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes,” Jpn. J. Appl. Phys.vol.34, pp.L1332-L1335, 1995.
    [6] T. Mukai, K. Takekawa, and S. Nakamura, Jpn. J. Appl. Phys. 37, L839 (1998).
    [7] S. Nakamura, M. Senoh and S. Nagahama et al. Appl. Phys. Lett. 72, 211 (1998).
    [8] Chul Huh, Ji-Myon Lee and Dong-Joon Kim et al. Proceedings of SPIE Vol. 4445 (2001)
    [9] Chul Huh, Ji-Myon Lee and Dong-Joon Kim et al. Journal of Applied Physics, vol.92, 2248 (2002).
    [10] X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates”, Journal of Applied Physics Vol. 90, 8 (2001)
    [11] X. Guo and E. F. Schubert, “Current crowding and optical saturation effects in GaN/InGaN light-emitting diodes grown on insulating substrates”, Applied Physics Letter, Vol. 78, 3337 (2001)
    [12] W. B. Joyce and S. H. Wemple, “Steady-State Junction-Current Distributions in Thin Resistive Films on Semiconductor Junctions”, Journal of Applied Physics Vol. 41, 9, 3818-3830 (1970)
    [13]莊達人, VLSI製造技術, 高立圖書, (2000)
    [14]I. Schnitzer, E. Yablonovitch and C. Caneau et al. "30 % external quantum efficiency from surface textured, thin-film light-emitting diodes", Appl. Phys. Lett. 63, pp. 2174-2 176, 1993
    [15] Ho Won Jang and Jong-Lam Lee, “Effect of Cl2 Plasma Treatment on Metal Contacts to n-Type and p-Type GaN”, Journal of The Electrochemical Society, 150 G513-G519 (2003)
    [16] H. W. Jang, C. M. Jeon and J. K. Kim et al. Appl. Phys. Lett., 78, 2015, (2001)
    [17] S. M. SZE, VLSI Technology, McGraw-HILL, (1988)
    [18] 敦俊儒,「離子佈植摻雜氮化鎵薄膜的光、電、結構特性之分析」,國立中央大學,碩士論文,民國90年
    [19] 鍾易亨,「磷化鋁鎵銦發光二極體外部量子效率的改善」,國立成功大學,碩士論文,民國92年
    [20] 呂育聰,「利用電流阻隔層及鈍化層的研究來改善氮化鎵藍光二極體的發光效率」,國立成功大學,博士論文,民國92年
    [21] 劉建志,「高亮度發光二極體之設計與製作」,國立成功大學,博士論文,民國93年

    QR CODE
    :::