| 研究生: |
楊傑甯 Jie-ning Yang |
|---|---|
| 論文名稱: |
次微米氮化鎵電晶體之製程與特性分析 The Device Fabrication and Characteristic of Sub-micron GaN HEMT |
| 指導教授: |
辛裕明
Yue-ming Hsin 詹益仁 Yi-jen Chan 林恒光 Heng-kuang Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 氮化鎵 、電晶體 |
| 外文關鍵詞: | GaN, HEMT |
| 相關次數: | 點閱:31 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,能源問題越來越被人們所重視,使得在對半導體元件上之功率的要求也與日俱增。相較於傳統矽基材料,氮化鎵材料由於先天的材料優勢及特性,如:高耐熱、高崩潰電壓、高電子飽和速度、優秀的壓電效應以及高電流密度,使得在高速、高功率的應用上成為極佳的選擇,尤其適合像是在汽車電子高溫高功率的環境。
本論文為了實現高速、高電壓操作之氮化鎵高電子移動率功率電晶體,利用電子束微影系統(E-Beam Writer)製作特殊結構之次微米尺寸的電晶體。並利用氮化矽鈍化層製程對元件進行鈍化(passivation)製程,以改善在氮化鎵系統所一直被詬病的表面狀態以及高頻操作時的電流崩潰現象;配合主動元件之鈍化層製程,製作被動元件,並以模擬軟體設計電路,希望將主被動元件在藍寶石基板上整合成一放大器。
In recent years, how to obtain a high power of semiconductor device is the major challenge in modern semiconductor application. The gallium nitride (GaN) device has outstanding electrical characteristics in comparison with silicon base device, such as temperature stability, high breakdown voltage, high electron velocity, and stronger piezoelectric effect due to nature of material properties. These advantages enable GaN HEMT to be a good candidate for high-speed, high power, and high-temperature applications.
In this thesis, we demonstrated the high speed and high power GaN HEMT fabricated with the sub-micron T-shape gate by the electron beam lithography. The additional passivation layer using the silicon nitride material on device surface reduces the surface trap effect and improve the current collapse drawback. Moreover, the passive and active components are fabricated on the same sapphire substrate for amplifier application. The passive components include resistor, capacitor, and inductor with model parameters from various sizes consideration.
參考文獻
[1] D. Xu, T. Suemitsu, H. Yokoyama, Y. Umeda, T. Enoki, Y. Ishii “Short gate-length InAlAs/InGaAs MODFETs with asymmetry gate-recess grooves: electrochemical fabrication and performance” Solid-State Electronics, vol. 43, pp. 1527, (1999)
[2] S. J. Pearton, C. B. Vartuli, J. C. Zolper, C. Yuan, R. A. Stall “Ion implantation doping and isolation of GaN” Appl. Phys. Lett. vol. 67, pp. 1435, (1995)
[3] Shuti Li, Chuying Ouyang, “First principles study of wurtzite and zinc blende GaN: a comparison of the electronic and optical properties” Physics Letters A 336, pp.145, (2005).
[4] Wikimedia commons
[5] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman, “Tow dimension electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructure” J. Appl. Phys. vol. 87, pp.334 (2000)
[6] A. N. Broers, W. W. Molzen, J. J. Cuomo, and N. D. Wittels, “Electron beam fabrication of 80 metal structure,” Appl. Phys. Lett. vol. 29, pp.596 (1976)
[7] C. Y. Chang, G. Owen, R. F. Pease, and T. Kailath, “A computational method for the correction of proximity effect in electron-beam lithography” Proc. SPIE, vol. 1671, pp.208 (1992)
[8] O. Ambacher, “Growth and applications of Group III-nitrides” J. Phys. D31, pp.2653 (1998).
[9] M. A. Khan, Q. Chen, M. S. Shur, B. T. McDermott, J. A. Higgins, J. Burm,
W. J. Schaff, and L. F. Eastman, “ CW operation of short-channel GaN/AlGaN doped channel heterostructure field effect transistors at 10 GHz and 15 GHz,” IEEE Electron Device Lett. vol. 17, pp.584 (1996).
[10] S. C. Binari, J. M. Redwing, G. Kerlner, and W. Kruppa, “AlGaN/GaN HEMT’s grown on SiC substrates,” Electron. Lett., vol. 33, pp.242 (1997).
[11] R. Gaska, Q. Chen, J. Yang, A. Osinsky, M. A. Khan, and M. S. Shur, “High temperature performance of AlGaN/GaN HFETs on SiC substract,” IEEE Electron Device Lett. vol. 18, pp.492 (1997)
[12] Y. F. Wu, S. Keller, P. Kozodoy, B. P. Keller, P. Parish, D. Kapolnek, S. P. Denbaars, and U. K. Mishra, “Bias dependent microwave performance of AlGaN/GaN MODFET’s up to 100V,” IEEE Electorn Device Lett. vol. 18, pp.290 (1997).
[13] R. Oberhuber, G. Zankler, and P. Vogl, “Mobility of two-dimensional electrons in AlGaN/GaN modulation-doped field-effect transistors,” Appl. Phsy. Lett. vol. 73, pp.818 (1998).
[14] Y. Zhang andJ. Singh, “Charge control and mobility studies for an AlGaN/GaN high electron mobility transistor,” J. Appl. Phys. vol. 85, pp.587 (1999).
[15] B. E. Foutz, L. F. Eastman, U. V. Bhapkar, and M. S. Shur, “Comparison of high field electron transport in GaN and GaAs,” Appl. Phys. Lett. vol. 70, pp.2849 (1997).
[16] N. Q. Zhang, S. Keller, G. Parish, S. Geikmann, S. P. Denbarrs, and U. K. Mishra, “High breakdown GaN HEMT with overlapping gate structure,” IEEE Electron Device Lett. vol. 23, pp.421 (2000).
[17] Q. Chen, J. W. Yang, M. A. Khan, A. T. Ping and I. Adesida, “High transconductance AlGaN/GaN HFET’s on SiC substrates,” Electron Lett. vol. 33, pp.1413 (1997).
[18] M. Micovic, X. N. Nguycn, P. Janke, W. S. Wong, P. Hashimoto, L. M. Mc Cray and C. Nguycn, “GaN/AlGaN high electron mobility transistors with fT 110 GHz,” Electron Lett. vol. 36, pp.358 (2000).
[19] J. S. Moon, M. Micovic, P. Janke, P. Hashimoto, W. S. Wong, L. M. McCray, A. Kurdoghlian and C. Nguycn, “GaN/AlGaN HEMTs operating at 20 GHz with continuous-wave power density>6W/mm,” Electron Lett. vol. 37, pp.528 (2001)
[20] Y. F. Wu, A. Saxler, M. Moore, R. P. Smith, S. Sheppard, P. M. Chavarkar, T. Wisleder, U. K. Mishra and P. Parikh, “ 30-W/mm GaN HEMTs by field plate optimization,” IEEE Electron Device Lett. vol. 25, pp.117 (2004).
[21] U. K. Mishra, P. Parikh, Y. F. Wu, “AlGaN/GaN HEMTs : An overview of device operation and application,” Electrical & Computer Engineering Department, Engineering I, University of California, Santa Barbara.
[22] J. W. Johnson, J. Gao, K. Lucht, J. Williamson, “Material, Process, and Device Development of GaN-based HFETs on Silicon Substrate,” Nitronex Corporation, NC27606.
[23] Y. L. Lan, H. C. Lin,1 H. H. Liu, G. Y. Lee, F. Ren,Stephen J. Pearton, M. N. Chang, and Jen-Inn Chyi, “Low-resistance smooth-surface Ti/AlCr/Mo/Au n-type Ohmic contact to AlGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 94, pp.243502, (2009).
[24] P. C. Chao, P. M. Smith, S. C. Palmateer, J. C. M. Hwang, “Electron-beam fabrication of GaAs low-noise MESFET’s using a new trilayer resist technique,” IEEE Trans. Electron Devices, vol. 32, pp.1042, (1985).
[25] T. Enoki, Y. Ishii, T. Tamamura, “ T-gate process and delay time analysis for sub-1/4-μm-gate InAlAs/InGaAs HEMT''s” Proc. of 3rd Int. Conf. Indium Phosphide and Related Materials, Cardiff, U.K., pp. 371, 1991.
[26] Y. Todokoro, “Double-layer resist film for submicrometer electron-beam lithography,” IEEE Trans. Electron Devices, ED-27, pp.1443, Aug (1980)
[27] 邱顯欽,“深次微米通道摻雜場效應電晶體及其微波功率放大器之應用”中央大學電機所博士班論文,(2003)
[28] L. Yang, Stephen I. Long, “New method to measure the source and drain resistance of the GaAs MESFE,” IEEE Electron Device Lett., vol. 7, pp.75 (1986)
[29] Anwar Jarnda, Günter Kompa, “A new small-signal modeling approach applied to GaN devices,” IEEE Trans. Microwave Theory Tech., vol. 53, pp.3440, Nov. (2005).
[30] 葉宗容, “矽化鎢應用於閘極金屬對元件熱穩定度以及微波射頻開關之製作與研究” 中央大學電機碩士班論文, 2003
[31] S. N. Mohammed and H. Morkoc, “Progress and prospects of group-III nitride semiconductors,” Prog. Quant. El., vol. 20, pp. 361, (1996).
[32] M. A. Khan, M. S. Shur, Q. C. Chen, and J. N. Kuznia, “Current/voltage characteristic collapse in AlGaN/GaN heterostructure insulated gate field effect transistors at high drain bias,” Electron Lett., vol. 30, pp.2175, Dec. (1994).
[33] S. C. Binari, W. Kruppa, H. B. Dietrich, G. Kelner, A. E. Wickenden, and J. A. Freitas, “Fabrication and characteristic of GaN FETs,” Solid State Electron, vol. 41, pp. 1549, Oct. (1997)
[34] P. B. Klein, J. A. Freitas, S. C. Binari, and A. E. Wickenden, “Observation of deep traps responsible for current collapse in GaN metal-semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 75, pp.4016, Dec. (1999).
[35] S. C. Binari, K. Ikossi, J. A. Roussos, W. Kruppa, D. Park, H. B. Dietrich, D. D. Koleske, A. E. Wickenden, and R. L. Henry, “Trapping effects and microwave power performance in AlGaN/GaN HEMTs,” IEEE Trans. Electron Device, vol. 48, pp.465, Mar. (2001)
[36] P. B. Klein, S. C. Binari, K. Ikossi, A. E. Wickenden, D. D, Koleske, and R. L. Henry, “Current collapse and the role of carbon in AlGaN/GaN high electron mobility transistors grown by metalorganic vapor-phase epitaxy,” Appl. Phys. Lett., vol. 79, pp.3527, Nov. (2001).
[37] G. Meneghesso, A. Chini, E. Zanoni, M. Manfredi, M. Pavesi, B. Boudart and C. Gaquiere, “Diagnosis of trapping phenomena in GaN MESFETs,” IEDM Tech.Dig., pp.389, Dec. (2000).
[38] S. C. Binari, P. B. Klein and T. E. Kazior, “Trapping effect in GaN and SiC microwave FETs,” Proc. IEEE, vol. 90, pp.1048, Jun. (2002).
[39] W. Kruppa, S. C. Binari, and K. Doverspike, “Low-frequency dispersion characteristics of GaN HFETs” Electron. Lett., vol. 31, pp.1951, Oct. (1995).
[40] B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy and L. F. Eastman, “The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMT,” IEEE Electron. Device Lett., vol. 21, pp.268, Jun. (2000).
[41] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo and T. Sano, “Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO2, Si3N4, and silicon oxynitride,” Appl. Phys. Lett., vol. 84, pp.613, Jan. (2004).
[42] P. Javorka, J. Bernat, A. Fox, M. Marso, H. Luth and P. Kordos, “Influence of SiO2 and Si3N4 passivation on AlGaN/GaN/Si HEMT performance” Electron. Lett., vol. 39, pp.1155, Jul. (2003).
[43] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo and M. Umeno, “Investigation of SiO2/n-GaN and Si3N4/n-GaN insulator semiconductor interfaces with low interface state density,” Appl. Phys. Lett., vol. 73, pp.809, (1998).
[44] W. Lu, V. Kumar, R. Schwindt, E. Piner and I. Adesida, “A comparative study of surface passivation on AlGaN/GaN HEMTs,” Solid-State Electron., vol. 46, pp.1441, (2002).
[45] A. V. Vertiachikh, L. F. Eastman, W. J. Schaff and T. Prunty, “Effect of surface passivation of AlGaN/GaN heterostructure field-effect transistor” Electron Lett., vol. 38, pp.388, (2002).
[46] T. Kikkawa, M. Nagahara, N. Okamoto, Y. Tateno, Y. Yamaguchi, N. Hara, K. Joshin, and P. M. Asbeck, “Surface charge controlled AlGaN/GaN power HEMT without current collapse and gm dispersion,” IEDM Tech. Dig., 693, (2003).
[47] S. Arulkumaran, T.Egawa, H. Ishikawa, and T. Jimbo, “Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO2, Si3N4, and silicon oxynitride,” Appl. Phys. Lett., vol. 84, pp.613, (2004).
[48] Jong-Soo Lee, A. Vescan, A. Wieszt, R. Dietrich, H. Leier and Yong-Se Kwon, “Small signal and power measurements of AlGaN/GaN HEMT with SiN passivation,” Electronics Lett., vol. 37, pp.130, Jan (2001)
[49] Xin Cao, Stephen Thoms, Douglas Macintyre, Helen McLelland, Euan Boyd, Khaled Elgaid, Richard Hill, Colin R. Stanley, Iain G. Thayne, “Fabrication and performance of 50 nm T-gate for InP high electron mobility transistors,” Microelectronic Engineering vol. 73, pp.818 (2004)