跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭權緻
Chuan-chih Kuo
論文名稱: 某類傳染病模型微分方程行波解之研究
Traveling Wave Solutions for Some EpidemicModels
指導教授: 許正雄
Cheng-hsiung Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 100
語文別: 英文
論文頁數: 26
中文關鍵詞: monotone iterations上解下解行進波傳染病模型
外文關鍵詞: upper and lower, traveling wave, epidemic model
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們主要研究某類傳染病模型的微分方程,其行波解的存
    在且該行波解為monotonic。利用monotone iteration這個方法,結合我們所
    建構的上解和下解,證明當存在最小的波速c* ,而且當波速高於最小波速
    c* 時,行波解是存在的。


    The purpose of this thesis is to investigate the existence of monotonic traveling
    wave solutions for some epidemic models. Using the monotone iteration method,
    combining with a pair of upper solution and lower solution, we show that there
    exist a minimal wave speed c* such that if the wave speed is greater than c* ,
    then there exist monotone traveling wave solutions.

    中文摘要........................................................................................................i 英文摘要.......................................................................................................ii Contents.......................................................................................................iii Abstract.........................................................................................................1 1. Introduction...............................................................................................2 2. Local Analysis and Minimal Wave Speed............................................5 3. Solution Operator and Its Properties.........................................................8 4. Construction of Upper and Lower Solutions...........................................10 5. Proof of the Main Theorem.....................................................................14 References...................................................................................................17

    [1] D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population
    genetics, combustion, and nerve pulse propagtion, in partial differential
    equations and related topics, Lecture Notes in Mathematics, 446,
    Spring-Verlag, 1975, 5-49.
    [2] V. Capasso, Mathematical structures of epidemic systems, Lecture
    Notes in Biomath. 97, Springer-Verlag, Heidelberg,1993.
    [3] V. Capasso and K. Kunisch, A reaction-diffusion system arising in
    modelling man-environment diseases, Quart. Appl. Math. 46 (1988),
    431-450
    [4] E. A. Coddington and N. Levinson, Theory of Ordinary Differential
    Equations, McGraw-Hill, New York, 1995.
    [5] V. Capasso and S. L. Paveri-Fontana, A mathmatical model for the
    1973 cholera epidemic in the European Mediterranean region, Revue
    d’Epidemiol. etde Sant’e Publique 27 (1979), 121-132
    [6] V. Capsso and R. E. Wilson, Analysis of reaction-diffusion system
    modeling man-environment-man epidemics,SIAM. J. Appl. Math. 57
    (1997), 327-346.
    [7] O. Diekmann, Thresholds and traveing waves for the geographical
    spread of infection, J. Math. Biology, 6 (1978), 109-130.
    [8] P. C. Fife, Mathematical Aspects of Reacting and Diffusing System,
    Lecture Notes in Biomath. 28, Springer-Verlag, Berlin and New York,
    1979.
    [9] S. A. Gourley, Travelling front solutions of a nonlinear diffusion equations,
    J. Math. Biology, 41 (2000), 272-284.
    [10] K. P. Hadeler, Nonlinear propagation in reaction transport systems,
    in differential equations with applications to biology, Fields Inst. Commun.,
    21, AMS, Providednce, RI, 1999, 251-257.
    [11] K. P. Hadeler and F. Rothe, Travelling fronts in nonlinear diffusion
    equations, J. Math. Biology, 2 (1975), 251-263.
    [12] J. D. Murray, Mathematical Biology, Springer-verlag, New York, 1989.
    [13] S. Ma, Travelling wavefronts for delayed reaction-diffusion systems via
    a fixed point theorem, J. Diff. Eqns., 171 (2001), 251-263.
    [14] K. W. Schaaf, Asymptotic behavior and traveling waves aolutions for
    parabolic functional differential equations, Trans. Amer. Math. Soc.,
    302 (1987), 587-615.
    [15] H. L. Smith and X.-Q. Zhao, Global asymptotic stabiliy of traveling
    waves in delayed reaction-diffusion eqautions, SIAM J. Math. Anal.,31
    (2000), 514-534.
    [16] A. I. Vopert, Vitaly A. Volpert and Vladimir A. Volpert, Traveling
    Waves Solutions of Parabolic Systems, Translation of Mathematical
    Monographs, 140, Amer. Math. Soc., 1994.
    [17] J. Wu, Theory and Applications of Parical Functional Differential
    Equations, Springer-Verlag, New York, 1996.
    [18] J. Wu and X. Zou, Travling wave fronts of reaction-diffusion systems
    with delay, J. Dynamics and Differential Equations, 13 (2001), 651-687.
    [19] X. Q Zhao and Z. T. Jing, Global asymptotic behavior in some cooperative
    systems of functional differential equations, Canadian Applied
    Mathematics Quarterly, 4 (1996), 421-444.
    [20] X. Q. Zhao and W. Wang, Fisher waves in an epidemic model, Disc.
    Conti. Dyn. Sys. Ser. B4 (2004), 1117-1128.

    QR CODE
    :::