跳到主要內容

簡易檢索 / 詳目顯示

研究生: 江冠勳
Kuan-Hsun Chiang
論文名稱: 設計超導量子電路的選擇定則用以發展電磁誘發透明
Engineering Selection Rules in Superconducting Quantum Circuits for Electromagnetically Induced Transparency
指導教授: 陳永富
Yung-Fu Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 125
中文關鍵詞: 電路量子電動力學微波量子光學波導管量子電動力學超導人造原子電磁誘發透明
外文關鍵詞: Circuit quantum electrodynamcis, Microwave quantum optics, Waveguide quantum electrodynamcis, Superconducting artificial atom, Electromagnetically induced transparency
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文藉由理論、數值模擬和實驗方法,探討在一維微波波導管中設計超導人造原子選擇定則的手段。在此環境中,多個頻率的微波都參與作用。我們的目標是創造沒有自發輻射的亞穩態,用以實現微波波導管中的電磁誘發透明,並使其具有可調控頻率的性質。然而常見的 transmon 型超導人造原子在一維開放空間中並沒有亞穩態。透過費米黃金律,我們分別研究兩種通用的方法抑制自發輻射,並以 transmon 型人造原子為平台研究此一課題。

    第一種方法是抑制介質的躍遷偶矩。我們使用兩個耦合的 transmon 型量子位元以形成超導人造「分子」。其第一激發態到基態有較小的躍遷偶矩,而第二激發態到基態的躍遷偶矩則較強。在兩個位元處於簡併態下,此系統自發形成一個孤立的亞穩態。藉由我們所提案的參數調制方法,其激發態和亞穩態之間能夠進行電場無法驅動的狀 態轉換。因此,此人造分子在參數調制下形成一個 Λ 型能階。我們並以數值模擬演示 此系統作為可調頻之電磁誘發透明介質的可行性。在實驗中,我們觀察到參數調制能夠驅動激發態與另一孤立能階之間的拉比振盪。然而,頻譜分析指出此系統是一個 Ξ 型能階,而非 Λ 型能階。另外,其時域反應指出了此一孤立能階和激發態具有相似的 去相干率。因此,電磁誘發透明並沒有在這個架設中被觀察到。

    第二種方法是抑制波導管中特定頻率的真空擾動。我們研究一個具有單一邊界反射 的一維波導管。多個模態的電磁場以駐波形式存在於此空間中。我們將一個 transmon 放置在微波波導管中,並距離其邊界不遠處。人造原子所暴露真空擾動的振幅,取決 於其共振波長以及其在波導管中的位置。因此,原子所感受到的真空擾動在特定頻率 可以被抑制,我們將原子的共振頻率調控在真空擾動的駐波節點以抑制自發輻射,藉 此創造亞穩態。我們並在此架設中演示一種非典型的 Λ 型電磁誘發透明。

    此論文闡述研究動機、理論背景、數值方法、元件設計與製作、量測方法及結果。


    This thesis addresses our studies on engineering the selection rules of superconducting artificial atoms in the architecture of waveguide quantum electrodynamcis, in which a broadband of microwave comes into play. The goal is to create a meta-stable state free of spontaneous relaxation. It does not exist in a transmon-type artificial atom when embedded in an open space. The purpose is for realizing electromagnetically induced transparency (EIT) with frequency tunability in a microwave waveguide. We use transmon-type artificial atoms to study two universal approaches suggested by Fermi’s golden rule.

    The first approach is by eliminating the inherent transition moment between certain levels in the media. Two frequency-tunable transmon qubits are paired up to form an artificial ”molecule”. The fi rst excited state |−⟩ of the molecule has a suppressed dipole moment, while the second excited state |+⟩ features an enhanced dipole moment. In particular, when the two qubits are biased on resonance, |−⟩ becomes an isolated meta-stable state |D⟩. Meanwhile, |+⟩ reaches a maximally dissipative state |B⟩. Parametric modulation on one of the qubits is able to activate the dipole-forbidden transition between |B⟩ and |D⟩. Therefore, the parametrically modulated transmon pair forms an effective Λ-system. We numerically demonstrate a frequency-tunable Λ-type EIT scheme through this approach. In the experimental study, the energy tunability and spontaneous relaxation of the |+⟩ state is characterized. We also observe that the dipole-forbidden transition between |B⟩ and |D⟩ is activated via our proposed parametric modulation. However, the spectroscopy implies that the system confi guresa Ξ-type level, instead of a Λ-type structure. In addition, the time dynamics infers a comparable decoherence rates between |−⟩ and | + ⟩. Therefore, EIT is missing in the device.

    The second approach is by eliminating the vacuum fluctuation of certain frequency at specific position in a waveguide. A standing-wave-like multi-mode space is formed in a semi-infi nite waveguide, which is a regular waveguide interrupted by a boundary. In such a space, the magnitude of vacuum fluctuation depends both on the wavelength of the mode, and on the position in the waveguide. In particular, the wavelength of each mode specifies amplitude ”nodes” in certain positions. A typical tunable transmon is placed at a distance from the end of the waveguide. The frequency-dependent spontaneous relaxation is characterized. We selectively eliminate the vaccum fl uctuation at targeted transition in order to create a meta-stable state. An unconventional Λ-type EIT is experimentally demonstrated.

    This thesis describes the motivation, theoretical background, numerical method, design, implementation and measurement results of the study.

    摘要 iii Abstract v Acknowledgement vii Preface ix Contents xi 1 Introduction and Motivation 1 1.1 Selection Rules and Meta-stable States................ 1 1.2 Λ-type Electomagnetically Induced Transparency........ 1 1.3 EIT in Superconducting Quantum Circuits .............. 3 1.4 Engineering Spontaneous Relaxation ................... 3 2 Waveguide QED Theory 5 2.1 Spontaneous Relaxation of a Qubit in an 1-D Waveguide .................. 5 2.2 Scattering of a Qubit in a Waveguide ................. 8 2.3 Scattering of a Driven Three-level System ........... 13 3 Two Strongly Coupled Transmon Qubits 21 3.1 Tunable Coupling Qubit .............................. 21 3.2 Proposal : Tunable Λ System Made of a Parametrically Modulated Qubit Pair..................................................... 27 4 Experimental Study of a Parametrically Modulated Transmon Pair 43 4.1 Experimental Setup .................................. 43 4.2 Spectroscopy ........................................ 46 4.3 Discussion .......................................... 57 4.4 Remark .............................................. 58 4.5 Suppressed | + ⟩ → |−⟩ Transition............................................... 59 4.6 Time Dynamics ....................................... 60 5 Experimental Study of a Transmon Near a Mirror 65 5.1 A Transmon in Front of a Mirror...................... 65 5.2 A Transmon at a Distance Away From a Mirror ......... 66 6 Conclusion and Outlook 71 Bibliography 73 A Experimental Methods 79 A.1 Device Design ....................................... 79 A.2 Cryostat Confi guration ......................................................... 81 A.3 Sample Box........................................... 82 A.4 Device Fabrication .................................. 87 A.5 TCQ Measurement : Determination of the Current-flux Relation ........... 95 B Supplemental Results for a Parametrically Modulated TCQ 97 B.1 Photon-assisted Landau-Zener-Stückelberg Interference ..................... 97 B.2 Stimulated Raman Adiabatic Passage ................ 99 C Circuit Quantization 103 C.1 Lumped Josephson Junction Circuits................. 103 C.2 1-D Open Transmission-Line................................................... 104 D Solving Transmons in the Charge Basis 105 D.1 Single Transmon ....................................................... 105 D.2 Two Coupled Transmons.............................................. 107

    [1] Nakamura, Y., Pashkin, Y. and Tsai, J. Coherent control of macroscopic quantum states
    in a single-Cooper-pair box. Nature 398, 786–788 (1999).
    [2] A. Blais, R.-S. Huang, A. Wallraff , S. M. Girvin, and R. J. Schoelkopf, Cavity quantum
    electrodynamics for superconducting electrical circuits: An architecture for quantum com-
    putation Phys. Rev. A 69, 062320 (2004).
    [3] A. Wallraff , D. I. Schuster, A. Blais, L. Frunzio, R.- S. Huang, J. Majer, S. Kumar, S. M.
    Girvin and R. J. Schoelkopf. Strong coupling of a single photon to a superconducting qubit
    using circuit quantum electrodynamics. Nature (London) 431, 162 (2004).
    [4] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H.
    Devoret, S. M. Girvin, and R. J. Schoelkopf, Charge-insensitive qubit design derived from
    the Cooper pair box. Phys. Rev. A 76, 042319 (2007).
    [5] X. Gu, A. F. Kockum, A. Miranowicz, Y.-X. Liu, and F. Nori, Microwave photonics with
    superconducting quantum circuits. Phys. Rep. 718-719, 1 (2017).
    [6] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, A
    quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).
    [7] F. Arute et al., Quantum supremacy using a programmable superconducting processor.
    Nature 574, 505 (2019).
    [8] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagnetically induced trans-
    parency: Optics in coherent media. Reviews of Modern Physics 77, 633 (2005).
    [9] S. E. Harris, J. E. Field, and A. Imamoglu, Nonlinear optical processes using electromag-
    netically induced transparency. Physical Review Letters 64, 1107 (1990).
    [10] K.-J. Boller, A. Imamoglu, and S. E. Harris Observation of electromagnetically induced
    transparency, Phys. Rev. Lett. 66, 25931991.
    [11] Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, Coherent
    Optical Memory with High Storage Effi ciency and Large Fractional Delay. Phys. Rev. Lett.
    110, 083601(2013).
    [12] M. Fleischhauer and M. D. Lukin, Dark-State Polaritons in Electromagnetically Induced
    Transparency Phys. Rev. Lett. 84, 5094 (2000).
    73BIBLIOGRAPHY
    [13] Liu, C., Dutton, Z., Behroozi, C. and Lene Vestergaard Hau, Observation of coherent
    optical information storage in an atomic medium using halted light pulses. Nature 409,
    490–493 (2001)
    [14] L. Slodicka, G. Hetet, S. Gerber, M. Hennrich, and R. Blatt, Electromagnetically Induced
    Transparency from a Single Atom in Free Space. Physical Review Letters 105, 153604
    (2010)
    [15] A. A. Abdumalikov, Jr., O. Astafi ev, A. M. Zagoskin, Yu. A. Pashkin, Y. Nakamura, and
    J. S. Tsai, Electromagnetically Induced Transparency on a Single Artifi cial Atom. Phys.
    Rev. Lett. 104, 193601 (2010).
    [16] P. M. Anisimov, J. P. Dowling, and B. C. Sanders, Objectively Discerning Autler-Townes
    Splitting from Electromagnetically Induced Transparency. Phys. Rev. Lett. 107, 163604
    (2011).
    [17] T. Y. Abi-Salloum, Electromagnetically induced transparency and Autler-Townes splitting:
    Two similar but distinct phenomena in two categories of three-level atomic systems. Phys.
    Rev. A 81, 053836 (2010).
    [18] H.-C. Sun, Y.-X. Liu, H. Ian, J. Q. You, E. Il’ichev, and F. Nori, Electromagnetically in-
    duced transparency and Autler-Townes splitting in superconducting fl ux quantum circuits.
    Phys. Rev. A 89, 063822 (2014).
    [19] S. Novikov, T. Sweeney, J. E. Robinson, S. P. Premaratne, B. Suri, F. C. Wellstood, and
    B. S. Palmer, Raman coherence in a circuit quantum electrodynamics lambda system. Nat.
    Phys. 12, 75 (2016).
    [20] X. Gu, S.-N. Huai, F. Nori, and Y.-X. Liu, Polariton states in circuit QED for electromag-
    netically induced transparency. Phys. Rev. A 93, 063827 (2016).
    [21] Q.-C. Liu, T.-F. Li, X.-Q. Luo, H. Zhao, W. Xiong, Y.-S. Zhang, Z. Chen, J. S. Liu,
    W. Chen, F. Nori, J. S. Tsai, and J. Q. You, Method for identifying electromagnetically
    induced transparency in a tunable circuit quantum electrodynamics system. Phys. Rev. A
    93, 053838 (2016).
    [22] J. Long, H. S. Ku, X. Wu, X. Gu, R. E. Lake, M. Bal, Y.-X. Liu, and D. P. Pappas, Elec-
    tromagnetically Induced Transparency in Circuit Quantum Electrodynamics with Nested
    Polariton States. Phys. Rev. Lett. 120, 083602 (2018).
    [23] A. M. Vadiraj, A. Ask, T. G. McConkey, I. Nsanzineza, C. W. Sandbo Chang, A. F.
    Kockum, and C. M. Wilson Engineering the level structure of a giant artifi cial atom in
    waveguide quantum electrodynamics Phys. Rev. A 103, 023710 (2021).
    [24] G. Andersson, M. K. Ekström, and P. Delsing, Electromagnetically Induced Acoustic Trans-
    parency with a Superconducting Circuit. Phys. Rev. Lett. 124, 240402 (2020).
    74[25] I-C. Hoi, C M Wilson, G. Johansson, J. Lindkvist, B. Peropadre, T. Palomaki and Per
    Delsing Microwave quantum optics with an artifi cial atom in one-dimensional open space
    New J. Phys. 15 025011 (2013).
    [26] I-C. Hoi. (2013) Quantum Optics with Propagating Microwaves in Superconducting Cir-
    cuits. [Doctoral dissertation], Chalmers University of Technology.
    [27] O. Astafi ev, A. M. Zagoskin, A. A. Abdumalikov Jr., Yu. A. Pashkin, T. Yamamoto, K.
    Inomata, Y. Nakamura, J. S. Tsai, Resonance Fluorescence of a Single Artifi cial Atom.
    Science 327, 840–843 (2010).
    [28] Hoi, IC., Kockum, A., Tornberg, L. et al. Probing the quantum vacuum with an artifi cial
    atom in front of a mirror. Nature Phys 11, 1045–1049 (2015).
    [29] P. Y. Wen, A. F. Kockum, H. Ian, J. C. Chen, F. Nori, and I.-C. Hoi, Refl ective Amplifi ca-
    tion without Population Inversion from a Strongly Driven Superconducting Qubit. Phys.
    Rev. Lett. 120, 063603 (2018).
    [30] P. Y. Wen, K.-T. Lin, A. F. Kockum, B. Suri, H. Ian, J. C. Chen, S. Y. Mao, C. C. Chiu,
    P. Delsing, F. Nori, G.-D. Lin, and I.-C. Hoi. Large Collective Lamb Shift of Two Distant
    Superconducting Artifi cial Atoms Phys. Rev. Lett. 123, 233602 (2019).
    [31] W.-J. Lin, Y. Lu, P. Y. Wen, Y.-T. Cheng, C.-P. Lee, K. T. Lin, K.-H. Chiang, M. C.
    Hsieh, C.-Y. Chen, C.-H. Chien, J. J. Lin, J.-C. Chen, Y. H. Lin, C.-S. Chuu, F. Nori, A.
    F. Kockum, G. D. Lin, P. Delsing, and I.-C. Hoi, Deterministic Loading of Microwaves onto
    an Artifi cial Atom Using a Time-Reversed Waveform. Nano Lett. 2022, 22, 20, 8137–8142
    [32] K. Lalumiére, B. C. Sanders, A. F. van Loo, A. Fedorov, A. Wallraff and A. Blais, Input-
    output theory for waveguide QED with an ensemble of inhomogeneous atoms. Phys. Rev.
    A 88, 043806 (2013).
    [33] N. Earnest, S. Chakram, Y. Lu, N. Irons, R. K. Naik, N. Leung, L. Ocola, D. A. Czaplewski,
    B. Baker, J. Lawrence, J. Koch, and D. I. Schuster, Realization of a Λ System with
    Metastable States of a Capacitively Shunted Fluxonium. Phys. Rev. Lett. 120, 150504
    (2018).
    [34] W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas,
    Direct Observation of Coherent Population Trapping in a Superconducting Artifi cial Atom.
    Phys. Rev. Lett. 104, 163601 (2010).
    [35] W. Feng, D.-W. Wang, H. Cai, S.-Y. Zhu, and M. O. Scully, Electromagnetically induced
    transparency with superradiant and subradiant states. Phys. Rev. A 95, 033845 (2017).
    [36] K.-H. Chiang and Y.-F. Chen, Tunable Λ-type system made of a superconducting qubit
    pair. Phys. Rev. A 106, 023707 (2022).
    [37] J. M. Gambetta, A. A. Houck, and A. Blais, Superconducting Qubit with Purcell Protection
    and Tunable Coupling. Phys. Rev. Lett. 106, 030502 (2011).
    75BIBLIOGRAPHY
    [38] S. J. Srinivasan, A. J. Hoff man, J. M. Gambetta, and A. A. Houck, Phys. Tunable Coupling
    in Circuit Quantum Electrodynamics Using a Superconducting Charge Qubit with a V -
    Shaped Energy Level Diagram Phys. Rev. Lett. 106, 083601 (2011).
    [39] G. Zhang, Y. Liu, J. J. Raftery, and A. A. Houck, Suppression of photon shot noise dephas-
    ing in a tunable coupling superconducting qubit. Npj Quantum Information 3, 1 (2017).
    [40] R. H. Dicke, Coherence in Spontaneous Radiation Processes. Phys. Rev. 93, 99 (1954).
    [41] Z. Ficek and R. Tanaś, Entangled states and collective nonclassical eff ects in two-atom
    systems. Phys. Rep. 372, 5 (2002).
    [42] J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio,
    D. I. Schuster, A. A. Houck, A. Wallraff , A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
    Schoelkopf, Coupling superconducting qubits via a cavity bus. Nature 449, 443 (2007).
    [43] A. F. van Loo, A. Fedorov, K. Lalumiere, B. C. Sanders, A. Blais, and A. Photon-Mediated
    Interactions Between Distant Artifi cial Atoms Wallraff , , Science 342, 1494 (2013).
    [44] J. A. Mlynek, A. A. Abdumalikov, C. Eichler, and A. Wallraff , Observation of Dicke super-
    radiance for two artifi cial atoms in a cavity with high decay rate. Nat. Commun. 5, 5186
    (2014).
    [45] S. N. Shevchenko, S. Ashhab and Franco Nori, Landau–Zener–Stückelberg interferometry
    Phys. Rep. 492, 1, (2010)
    [46] J. Li, M. P. Silveri, K. S. Kumar, J.-M. Pirkkalainen, A. Vepsäläinen, W. C. Chien, J.
    Tuorila, M. A. Sillanpää, P. J. Hakonen, E. V. Thuneberg, and G. S. Paraoanu, Motional
    averaging in a superconducting qubit. Nat. Commun. 4, 1420 (2013).
    [47] M. Silveri, K. Kumar, J. Tuorila, J. Li, A. Vepsalainen, E. Thuneberg, and G. Paraoanu,
    Stückelberg interference in a superconducting qubit under periodic latching modulation.
    New J. Phys. 17 (2015) 043058 (2015)
    [48] P. Y. Wen, O. V. Ivakhnenko, M. A. Nakonechnyi, B. Suri, J.-J. Lin, W.-J. Lin, J. C.
    Chen, S. N. Shevchenko, Franco Nori, and I.-C. Hoi, Landau-Zener-Stückelberg-Majorana
    interferometry of a superconducting qubit in front of a mirror. Phys. Rev. B 102, 075448
    (2020).
    [49] S. Rebić, J. Twamley, and G. J. Milburn, Giant Kerr Nonlinearities in Circuit Quantum
    Electrodynamics. Phys. Rev. Lett. 103, 150503 (2009).
    [50] H. Okamoto, A. Gourgout, C.Y. Chang, K. Onomitsu, I. Mahboob, E. Y. Chang and H.
    Yamaguchi, Coherent phonon manipulation in coupled mechanical resonators. Nat. Phys.
    9, 480 (2013).
    [51] A. Opremcak, D. Sank, B. Chiaro, B. Foxen, M. McEwen, R. McDermott, J. M Martinis.
    Driving not so forbidden state transitions in a frequency-tunable transmon. A26.00012,
    APS March Meeting March 4, 2019, Boston, Massachusetts.
    76[52] M. D. Hutchings, J. B. Hertzberg, Y. Liu, N. T. Bronn, G. A. Keefe, M. Brink, J. M. Chow,
    and B. L. T. Plourde, Tunable Superconducting Qubits with Flux-Independent Coherence.
    Phys. Rev. Applied 8, 044003 (2017).
    [53] M. A. Sillanpää, J. Li, K. Cicak, F. Altomare, J. I. Park, R. W. Simmonds, G. S. Paraoanu,
    and P. J. Hakonen, Autler-Townes Eff ect in a Superconducting Three-Level System. Phys.
    Rev. Lett. 103, 193601 (2009).
    [54] J. Li, G. S. Paraoanu, K. Cicak, F. Altomare, J. I. Park, R. W. Simmonds, M. A. Sillanpää,
    and P. J. Hakonen, Decoherence, Autler-Townes eff ect, and dark states in two-tone driving
    of a three-level superconducting system. Phys. Rev. B 84, 104527 (2011).
    [55] K. Koshino, K. Inomata, T. Yamamoto, and Y. Nakamura, Implementation of an
    Impedance-Matched Λ-System by Dressed-State Engineering. Phys. Rev. Lett. 111, 153601
    (2013).
    [56] K. Inomata, K. Koshino, Z. R. Lin, W. D. Oliver, J. S. Tsai, Y. Nakamura, and T. Ya-
    mamoto, Microwave Down-Conversion with an Impedance-Matched Λ System in Driven
    Circuit QED. Phys. Rev. Lett. 113, 063604 (2014).
    [57] P. Kumar, S. Sendelbach, M. A. Beck, J. W. Freeland, Z. Wang, H. Wang, C. C. Yu, R. Q.
    Wu, D. P. Pappas, and R. McDermott, Origin and Reduction of 1/f Magnetic Flux Noise
    in Superconducting Devices. Phys. Rev. Appl. 6, 041001(R) (2016).
    [58] F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A. P. Sears, D. Hover, T. J. Gudmundsen,
    D. Rosenberg, G. Samach, S. Weber, J. L. Yoder, T. P. Orlando, J. Clarke, A. J. Kerman,
    and W. D. Oliver, The fl ux qubit revisited to enhance coherence and reproducibility. Nat.
    Commun. 7, 12964 (2016).
    [59] Y. Zhong, H. Chang, A. Bienfait, É. Dumur, M.-H. Chou, C.R. Conner, J.Grebel, R. G.
    Povey, H. Yan , D. I. Schuster, A. N. Cleland, Deterministic multi-qubit entanglement in a
    quantum network. Nature 590, 571 (2021).
    [60] N. Didier, E. A. Sete, M. P. da Silva, and C. Rigetti, Analytical modeling of parametrically
    modulated transmon qubits. Phys. Rev. A 97, 022330 (2018)
    [61] S. A. Caldwel et al., Parametrically Activated Entangling Gates Using Transmon Qubits.
    Phys. Rev. Applied 10, 034050 (2018).
    [62] M. Reagor et al., Demonstration of universal parametric entangling gates on a multi-qubit
    lattice. Sci Adv 4, eaao3603 (2018).
    [63] N. Didier, E. A. Sete, J. Combes, and M. P. da Silva, ac Flux Sweet Spots in Parametrically
    Modulated Superconducting Qubits. Phys. Rev. Appl. 12, 054015 (2019).
    [64] P. Forn-Díaz, C. W. Warren, C. W. S. Chang, A. M. Vadiraj, and C. M. Wilson, On-Demand
    Microwave Generator of Shaped Single Photons. Phys. Rev. Applied 8, 054015 (2017)
    [65] A. Megrant et al., Planar superconducting resonators with internal quality factors above
    one million. Appl. Phys. Lett. 100, 113510 (2012).
    77BIBLIOGRAPHY
    [66] R. C. Bialczak, M. Ansmann, M. Hofheinz, M. Lenander, E. Lucero, M. Neeley, A. D.
    O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, T. Yamamoto, A. N. Cleland, and
    J. M. Martinis Fast Tunable Coupler for Superconducting Qubits. Phys. Rev. Lett. 106,
    060501 (2011).
    [67] A. Ripin, E. Connors, and J. Nichol, urpec (2019). https://github.com/nicholgroup/
    urpec
    [68] D. Droui, et al., CASINO (2016). https://www.gegi.usherbrooke.ca/casino/
    [69] N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, Stimulated Raman adia-
    batic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89, 015006 (2017).
    [70] B. T. Torosov and N. V. Vitanov, Composite stimulated Raman adiabatic passage. Phys.
    Rev. A 87, 043418 (2013).
    [71] K. Bergmann et al., Roadmap on STIRAP applications. J. Phys. B At. Mol. Opt. Phys.
    52, 202001 (2019).
    [72] K. S. Kumar, A. Vepsäläinen, S. Danilin, and G. S. Paraoanu, Stimulated Raman adiabatic
    passage in a three-level superconducting circuit. Nat. Commun. 7, 10628 (2016).
    [73] S. P. Premaratne, F. C. Wellstood, and B. S. Palmer, Microwave photon Fock state gener-
    ation by stimulated Raman adiabatic passage. Nat. Commun. 8, 14148 (2017).
    [74] A. Vepsäläinen, S. Danilin, and G. S. Paraoanu, Superadiabatic population transfer in a
    three-level superconducting circuit. Sci Adv 5, eaau5999 (2019).
    [75] L. P. Yatsenko, V. I. Romanenko, B. W. Shore, and K. Bergmann, Stimulated Raman
    adiabatic passage with partially coherent laser fields. Phys. Rev.A 65, 043409 (2002).
    [76] L. P. Yatsenko, B. W. Shore, and K. Bergmann, Detrimental consequences of small rapid
    laser fluctuations on stimulated Raman adiabatic passage. Phys. Rev.A 89, 013831 (2014).
    [77] TW_Thesis_Template, sppmg, https://github.com/sppmg/TW_Thesis_Template, Embedded bibliography demo.

    QR CODE
    :::