跳到主要內容

簡易檢索 / 詳目顯示

研究生: 施彥行
Yen-Hsin Shih
論文名稱: 應用在磷化銦鎵/砷化銦鎵/鍺三接面太陽能電池的磷化銦鎵上電池特性之改善
Characteristic Improvements of GaInP Top Cell for GaInP/GaInAs/Ge Triple Junction Solar Cell
指導教授: 洪志旺
Jyh-Wong Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 98
語文別: 英文
論文頁數: 82
中文關鍵詞: 太陽能電池磷化銦鎵三五族
外文關鍵詞: solar cell, GaInP, III-Vs
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的主題為應用在磷化銦鎵/砷化銦鎵/鍺三接面太陽能電池上的磷化銦鎵上層子電池的製備以及在一個太陽光,AM1.5G下之特性改善。
    本論文的第一部分探討射極層厚度對元件特性的影響,經由實驗發現,採用較薄的射極層可增加短路電流密度,進而提升太陽能電池的轉換效率。
    第二部分探討基極層摻雜方式對元件特性的影響,採用漸變的摻雜方式可在基極層內形成「漂移電場」,加強多數及少數載子的傳輸,使得太陽能電池的短路電流密度以及轉換效率得以提升。
    第三部分延續第二部分的結果,在基極層採用漸變摻雜方式的基礎上,進一步增加基極層的厚度,經由實驗發現,較厚的基極層可增加短路電流密度,進而提升太陽能電池的轉換效率。
    最後,三種不同的材料,亦即磷化鋁銦鎵、磷化銦鎵以及磷化鋁銦,分別被應用於製作背表面電場層。實驗結果顯示太陽能電池的表現似乎與基極層及背表面電場層接面上的傳導帶偏移量直接相關。採用磷化鋁銦當做背表面電場層材料的太陽能電池具有最大的傳導帶偏移量,因此展現出最高的短路電流密度及轉換效率。


    In this thesis, the GaInP solar-cells which are the top cell of the GaInP/GaInAs/Ge triple-junction solar-cell have been fabricated with several different epitaxial conditions, in order to improve the characteristics of the GaInP solar-cells under one sun, AM1.5G, condition.
    Firstly, the effects of emitter thickness have been studied. By employing a thinner emitter, the cell efficiency can be improved mainly due to the increasing of short-circuit current density.
    Secondly, different base doping profiles have been employed. The results indicate a graded base doping can generate a “drift-field” in the base region, which enhances the transports of majority and minority carriers, thus improves the short-circuit current density and conversion efficiency.
    Thirdly, following the consequence of the second experiment, the short-circuit current density and conversion efficiency can be further improved by employing a thicker base layer.
    Finally, three different materials for back-surface field (BSF) layer, AlGaInP, GaInP, and AlInP have been adopted, respectively. From the experiment results, it seems that the solar-cell performance is directly related to the degree of conduction-band offset at the interface between base and BSF. The solar-cell with an AlInP BSF which has the largest conduction-band offset, demonstrates the highest conversion efficiency, mainly due to the largest short-circuit current density.

    Abstract (Chinese) i Abstract ii Acknowledgement iii Contents iv Figure Captions vii Table Captions x Chapter 1 Introduction 1 1-1 Background and Motivation 1 1-2 Introduction of Solar-Cells 3 1-3 High-Efficiency III-V Solar-Cells 5 1-3-1 The Concept of Multijunction Solar-Cells 5 1-3-2 State-of-the-art Triple-junction Solar-Cells 7 1-3-2-1 Lattice-matched Configuration 8 1-3-2-2 Metamorphic Configuration 9 1-3-2-3 Inverted Metamorphic Configuration 10 1-3-3 Next-Generation Solar-Cells 11 1-4 GaInP Top Cell 13 Chapter 2 Basic Physics of Solar-Cells 15 2-1 Basic Operation of Solar-Cells 15 2-2 Solar Radiation Spectrum and Air Mass 18 2-3 I-V Characteristics of Solar-Cells 20 2-4 Effects of Parasitic Resistances 25 Chapter 3 Introduction of MOCVD 28 3-1 Precursors 28 3-2 MOCVD System 31 3-3 Growth Mechanism 33 Chapter 4 Experiments 35 4-1 Basic Cell Structure 35 4-2 Experiment I: Tuning the Emitter Thickness 38 4-2-1 Experimental Procedures 38 4-2-2 Experimental Results 39 4-2-3 Discussion 41 4-3 Experiment II: Tuning the Base Doping 43 4-3-1 Experimental Procedures 43 4-3-2 Experimental Results 46 4-3-3 Discussion 47 4-4 Experiment III: Tuning the Base Thickness 49 4-4-1 Experimental Procedures 49 4-4-2 Experimental Results 50 4-4-3 Discussion 51 4-5 Experiment IV: Changing BSF Material 53 4-5-1 Experimental Procedures 53 4-5-2 Sample C: AlGaInP BSF Layer 56 4-5-3 Sample G: GaInP BSF Layer 57 4-5-4 Sample H: AlInP BSF Layer 61 4-5-5 Experimental Results 62 4-5-6 Discussion 63 Chapter 5 Conclusions and Future Works 67 5-1 Conclusions 67 5-2 Future Works 68 References 69

    [1] International Energy Agency (IEA),“World Energy Outlook 2009 - Executive Summary © OECD/IEA,”2009.
    [2] International Energy Agency (IEA),“World Energy Outlook 2008 - Executive Summary © OECD/IEA,”2008.
    [3] 經濟部能源局,“2007年能源科技研究發展白皮書,” 2007。
    [4] 經濟部能源局,“中華民國97年能源統計手冊,” 2009。
    [5] United Nations (UN),“Kyoto Protocol to the United Nations Framework Convention on Climate Change,”1998.
    [6] 林子倫,“哥本哈根會議後的全球氣候政治趨勢,” 能源報導,2010年2月號,pp. 5-9,經濟部能源局,2010。
    [7] M. D. Archer,“The Past and Present,”in Clean Electricity from Photovoltaics, edited by M. D. Archer and R. Hill, Ch.1, pp. 1-31, Imperial College Press, 2001.
    [8] D. M. Chapin, C. S. Fuller and G. O. Pearson,“A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power,”Journal of Applied Physics, vol. 25, pp. 676-677, 1954.
    [9] T. Surek,“Crystal Growth and Materials Research in Photovoltaics: Progress and Challenges,”Journal of Crystal Growth, vol. 275, pp. 292-304, 2005.
    [10] L. L. Kazmerski,“Solar Photovoltaics R&D at the Tipping Point: a 2005 Technology Overview,”Journal of Electron Spectroscopy and Related Phenomena, vol. 150, pp. 105–135, 2006.
    [11] J. Zhao, A. Wang and M. A. Green,“24.5% Efficiency Silicon PERT Cells on MCZ Substrates and 24.7% Efficiency PERL Cells on FZ Substrates,”Progress in Photovoltaics: Research and Applications, vol. 7, pp. 471-474, 1999.
    [12] O. Schultz, S. W. Glunz and G. P. Willeke,“Multicrystalline Silicon Solar Cells Exceeding 20% Efficiency,”Progress in Photovoltaics: Research and Applications, vol. 12, pp. 553-558, 2004.
    [13] B. Yan, G. Yue and S. Guha,“Status of nc-Si:H Solar Cells at United Solar and Roadmap for Manufacturing a-Si:H and nc-Si:H Based Solar Panels,”in Amorphous and Polycrystalline Thin-Film Silicon Science and Technology - 2007, edited by V. Chu, S. Miyazaki, A. Nathan, J. Yang, and H. W. Zan, Materials Research Society Symposium Proceeding, vol. 989, Paper #: 0989-A15-01, 2007.
    [14] R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam,“Band-Gap-Engineered Architectures for High-Efficiency Multijunction Concentrator Solar Cells,”Proceedings of the 24th European Photovoltaic Solar Energy Conference and Exhibition, pp. 55-61, 2009.
    [15] X. Wu, J. C. Keane, R. G. Dhere, C. DeHart, A. Duda, T. A. Gessert, S. Asher, D. H. Levi, and P. Sheldon,“16.5%-Efficient CdS/CdTe Polycrystalline Thin-Film Solar Cell,”Proceedings of 17th European Photovoltaic Solar Energy Conference, pp. 995–1000, 2001.
    [16] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi,“19.9% - Efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor,”Progress in Photovoltaics: Research and Applications, vol. 16, pp. 235-239, 2008.
    [17] L. Han, A. Fukui, N. Fuke, N. Koide, and R. Yamanaka,“High Efficiency of Dye-Sensitized Solar Cell and Module,”Proceedings of the 4th World Conference on Photovoltaic Energy Conversion, vol. 1, pp. 179-182, 2006.
    [18] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta,“Solar Cell Efficiency Tables (Version 35),”Progress in Photovoltaics: Research and Applications, vol. 18, pp. 144-150, 2010.
    [19] M. Grätzel, “Photovoltaic Performance and Long-Term Stability of Dye-Sensitized Meosocopic Solar Cells,”Comptes Rendus Chimie, vol. 9, pp. 578-583, 2006.
    [20] N. Kato, Y. Takeda, K. Higuchi, A. Takeichi, E. Sudo, H. Tanaka, T. Motohiro, T. Sano, and T. Toyoda,“Degradation Analysis of Dye-Sensitized Solar Cell Module after Long-Term Stability Test under Outdoor Working Condition,”Solar Energy Materials and Solar Cells, vol. 93, pp. 893-897, 2009.
    [21] P. M. Sommeling, M. Späth, H. J. P. Smit, N. J. Bakker, and J. M. Kroon, “Long-Term Stability Testing of Dye-Sensitized Solar Cells,”Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, pp. 137-144, 2004.
    [22] M. Jørgensen, K. Norrman, and F. C. Krebs,“Stability/Degradation of Polymer Solar Cells,”Solar Energy Materials and Solar Cells, vol. 92, pp. 686–714, 2008.
    [23] 林天行、譚小金、葉仰哲、范馨文,“能源材料發展趨勢與機會探討,”工業技術研究院產業經濟與趨勢研究中心,2006。
    [24] P. A. Iles,“Evolution of Space Solar Cells,”Solar Energy Materials and Solar Cells, vol. 68, pp. 1-13, 2001.
    [25] S. Bailey and R. Raffaelle,“Space Solar Cells and Arrays,”in Handbook of Photovoltaic Science and Engineering, edited by A. Luque and S. Hegedus, Ch.10, pp. 413-448, John Wiley & Sons, 2003.
    [26] D. A. Jenny, J. J. Loferski, and P. Rappaport,“Photovoltaic Effect in GaAs p-n Junctions and Solar Energy Conversion,”Physical Review, vol. 101, pp. 1208-1209, 1956.
    [27] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta,“Solar Cell Efficiency Tables (Version 34), Progress in Photovoltaics: Research and Applications, vol. 17, pp. 320-326, 2009.
    [28] D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam,“Future Technology Pathways of Terrestrial III-V Multijunction Solar Cells for Concentrator Photovoltaic Systems,”Solar Energy Materials and Solar Cells, vol. 94, pp. 1314-1318, 2010.
    [29] T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori,“Over 30% Efficient InGaP/GaAs Tandem Solar Cells,”Applied Physics Letters, vol. 70, pp. 381-383, 1997.
    [30] T. Takamoto, E. Ikeda, H. Kurita, M. Ohmori, M. Yamaguchi, and M. J. Yang,“Two-Terminal Monolithic In0.5Ga0.5P/GaAs Tandem Solar Cells with a High Conversion Efficiency of Over 30%,”Japanese Journal of Applied Physics, vol. 36, pp. 6215-6220, 1997.
    [31] M. Yamaguchi, T. Takamoto, and K. Araki,“Super High-Efficiency Multi-Junction and Concentrator Solar Cells,”Solar Energy Materials and Solar Cells, vol. 90, pp. 3068-3077, 2006.
    [32] R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam,“40% Efficient Metamorphic GaInP/GaInAs/Ge Multijunction Solar Cells,”Applied Physics Letters, vol. 90, 183516, 2007.
    [33] W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth,“Current-Matched Triple-Junction Solar Cell Reaching 41.1% Conversion Efficiency under Concentrated Sunlight,”Applied Physics Letters, vol. 94, 223504, 2009.
    [34] J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones,“40.8% Efficient Inverted Triple-Junction Solar Cell with Two Independently Metamorphic Junctions,”Applied Physics Letters, vol. 93, 123505, 2008.
    [35] J. F. Geisz, S. R. Kurtz, M. W. Wanlass, J. S. Ward, A. Duda, D. J. Friedman, J. M. Olson, W. E. McMahon, T. E. Moriarty, and J. T. Kiehl,“High-Efficiency GaInP/GaAs/InGaAs Triple-Junction Solar Cells Grown Inverted with a Metamorphic Bottom Junction,”Applied Physics Letters, vol. 91, 023502, 2007.
    [36] N. H. Karam, R. R. King, M. Haddad, J. H. Ermer, H. Yoon, H. L. Cotal, R. Sudharsanan, J. W. Eldredge, K. Edmondson, D. E. Joslin, D. D. Krut, M. Takahashi, W. Nishikawa, M. Gillanders, J. Granata, P. Hebert, B. T. Cavicchi, D. R. Lillington,“Recent Developments in High-Efficiency Ga0.5In0.5P/GaAs/Ge Dual- and Triple- junction Solar Cells: Steps to Next-Generation PV Cells,”Solar Energy Materials and Solar Cells, vol. 66, pp. 453-466, 2001.
    [37] D. J. Friedman, J. F. Geisz, S. R. Kurtz, and J. M. Olson,“1-eV Solar Cells with GaInNAs Active Layer,”Journal of Crystal Growth, vol. 195, pp.409-415, 1998.
    [38] M. Yamaguchi, K.-I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki,“Novel Materials for High-Efficiency III-V Multi-Junction Solar Cells,”Solar Energy, vol. 82, pp. 173–180, 2008.
    [39] M. Stan, D. Aiken, B. Cho, A. Cornfeld, V. Ley, P. Patel, P. Sharps, and T. Varghese,“High-Efficiency Quadruple Junction Solar Cells Using OMVPE with Inverted Metamorphic Device Structures,”Journal of Crystal Growth, vol. 312, pp. 1370–1374, 2010.
    [40] R. R. King, R. A. Sherif, G. S. Kinsey, S. R. Kurtz, C. M. Fetzer, K. M. Edmondson, D. C. Law, H. L. Cotal, D. D. Krut, J. H. Ermer, and N. H. Karam,“Bandgap Engineering in High-Efficiency Multijunction Concentrator Cells,”International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen, NREL/CD-520-38172.
    [41] M. J. Archer, D. C. Law, S. Mesropian, M. Haddad, C. M. Fetzer, A. C. Ackerman, C. Ladous, R. R. King, and H. A. Atwater,“GaInP/GaAs Dual Junction Solar Cells on Ge/Si Epitaxial Templates,”Applied Physics Letters, vol. 92, 103503, 2008.
    [42] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. R. Kurtz,“Superior Radiation Resistance of In1-xGaxN Alloys: Full-Solar-Spectrum Photovoltaic Material System,”Journal of Applied Physics, vol. 94, pp. 6477-6482, 2003.
    [43] B. C. Chung, G. F. Virshup, and J. C. Schultz,“27.6% (1-Sun, Air Mass 1.5G) Monolithic Two-Junction AlGaAs/GaAs Solar Cell and 25% (1-Sun, Air Mass 0) Three-Junction AlGaAs/GaAs/InGaAs Cascade Solar Cell,”Proceedings of the 21st IEEE Photovoltaic Specialists Conference, pp. 179–183, 1990.
    [44] J. M. Olson, S. R. Kurtz, A. E. Kibbler, and P. Faine,“A 27.3% Efficient Ga0.5In0.5P/GaAs Tandem Solar Cell,” Applied Physics Letters, vol. 56, pp. 623-625, 1990.
    [45] J. M. Olson, D. J. Friedman and S. R. Kurtz,“High-Efficiency III-V Multijunction Solar Cells,”in Handbook of Photovoltaic Science and Engineering, edited by A. Luque and S. Hegedus, Ch.9, pp. 359-411, John Wiley & Sons, 2003.
    [46] M.-J. Yang, M. Yamaguchi, T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori,“Photoluminescence Analysis of InGaP Top Cells for High-Efficiency Multi-Junction Solar Cells,”Solar Energy Materials and Solar Cells, vol. 45, pp. 331-339, 1997.
    [47] H. Kurita, T. Takamoto, E. Ikeda, and M. Ohmori,“High-Efficiency Monolithic InGaP/GaAs Tandem Solar Cells with Improved Top-Cell Back-Surface-Field Layers,”Proceedings of the 7th International Conference on Indium Phosphide and Related Materials, pp. 516-519, 1995.
    [48] K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki,“Evaluation of InGaP/InGaAs/Ge Triple-Junction Solar Cell and Optimization of Solar Cell’s Structure Focusing on Series Resistance for High-Efficiency Concentrator Photovoltaic Systems,”Solar Energy Materials and Solar Cells, vol. 90, pp. 1308-1321, 2006.
    [49] J. L. Gray,“The Physics of the Solar Cell,”in Handbook of Photovoltaic Science and Engineering, edited by A. Luque and S. Hegedus, Ch.3, pp. 61-112, John Wiley & Sons, 2003.
    [50] J. Nelson,“The physics of solar cells,”Imperial College Press, 2003.
    [51] 蕭錫鍊,“半導體太陽電池元件原理,” 收錄於太陽電池,黃惠良、曾百亨編輯,第二章,pp. 15-136,五南圖書,2008。
    [52] Keith Emery,“Measurement and Characterization of Solar Cells and Modules,”in Handbook of Photovoltaic Science and Engineering, edited by A. Luque and S. Hegedus, Ch.16, pp. 701-752, John Wiley & Sons, 2003.
    [53] H. M. Manasevit,“Single-Crystal Gallium Arsenide on Insulating Substrates,”Applied Physics Letters, vol. 12, pp. 156-159, 1968.
    [54] H. M. Manasevit and W. I. Simpson,“The Use of Metal-Organics in the Preparation of Semiconductor Materials,”Journal of the Electrochemical Society, vol. 116, pp. 1725-1732, 1969.
    [55] G. B. Stringfellow,“Organometallic Vapor-Phase Epitaxy - Theory and Practice,”2nd Edition, Academic Press, 1999.
    [56] A. K. Furr,“CRC Handbook of Laboratory Safety,”5th Edition, CRC Press, 2000.
    [57] W. Stolz,“Alternative N-, P- and As-Precursors for III/V-Epitaxy,”Journal of Crystal Growth, vol. 209, pp. 272-278, 2000.
    [58] I. García, B. Galiana, I. Rey-Stolle and C. Algora,“MOVPE Technology for the Growth of III-V Semiconductor Structures,”Proceedings of the 2007 IEEE Spanish Conference on Electron Devices, pp. 17-20, 2007.
    [59] A. G. Thompson,“MOCVD Technology for Semiconductors,”Materials Letters, vol. 30, pp. 255-263, 1997.
    [60] M. A. Herman, W. Richter, and H. Sitter,“Metal Organic Vapor Phase Epitaxy,”in Epitaxy - Physical Principles and Technical Implementation, Ch.8, pp.171-200, Springer, 2004.
    [61] S. R. Kurtz, J. M. Olson, D. J. Friedman, J. F. Geisz, A. E. Kibbler, and K. A. Bertness,“Passivation of Interfaces in High-Efficiency Photovoltaic Devices,”Proceedings of Materials Research Society’s Spring Meeting, 1999.
    [62] T. Takamoto,“InGaP/GaAs tandem solar cells,”in InP and Related Compounds - Materials, Applications, and Devices, edited by M. O. Manasreh, Ch.16, pp. 787-837, Gordon and Breach Science Publishers, 2000.
    [63] I. García, I. Rey-Stolle, B. Galiana, and C. Algora,“Analysis of Tellurium as n-Type Dopant in GaInP: Doping, Diffusion, Memory Effect and Surfactant Properties,”Journal of Crystal Growth, vol. 298, pp. 794-799, 2007.
    [64] G. L. Snider,“1D Poisson/Schrödinger User''s Manual - a Band Diagram Calculator (available with freeware program together),”http://www.nd.edu/~gsnider/.
    [65] G. L. Snider, I.-H. Tan, and E. L. Hu,“Electron States in Mesa-Etched One-Dimensional Quantum Well Wires,”Journal of Applied Physics, vol. 68, pp. 2849-2853, 1990.
    [66] I.-H. Tan, G. L. Snider, and E. L. Hu,“A Self-Consistent Solution of Schrödinger-Poisson Equations Using a Nonuniform Mesh,”Journal of Applied Physics, vol. 68, pp. 4071-4076, 1990.
    [67] Y. Mols,“Metamorphic InGaP/InGaAs Multijunction Solar Cells on Germanium Substrates,”Ph.D. Dissertation, Katholieke Universiteit Leuven, 2008.
    [68] C. T. H. F. Liedenbaum, A. Valster, A. L. G. J. Severens, and G. W.’t Hooft,“Determination of the GaInP/AlGaInP Band Offset,”Applied Physics Letters, vol. 57, pp. 2698-2700, 1990.
    [69] X. H. Zhang, S. J. Chua, and W. J. Fan,“Band Offsets at GaInP/AlGaInP(001) Heterostructures Lattice Matched to GaAs,”Applied Physics Letters, vol. 73, pp. 1098-1100, 1998.
    [70] M. O. Watanabe and Y. Ohba,“Interface Properties for GaAs/InGaAlP Heterojunctions by the Capacitance-Voltage Profiling Technique,”Applied Physics Letters, vol. 50, pp. 906-908, 1987.
    [71] M. D. Dawson and G. Duggan, “Exciton Localization Effects and Heterojunction Band Offset in (Ga,In)P-(Al,Ga,In)P Multiple Quantum Wells,”Physical Review B, vol. 47, pp. 12598-12604, 1993.
    [72] S. M. Sze,“Semiconductor Devices: Physics and Technology, 2nd Edition,”John Wiley & Sons, 2002.
    [73] D. P. Bour,“AlGaInP Quantum Well Lasers,”in Quantum Well Lasers, edited by P. S. Zory, Jr., Ch.9, pp. 415-460, Academic Press, 1993.
    [74] R. B. Capaz, and B. Koiller,“Partial-Ordering Effects in InxGa1-xP,”Physical Review B, vol. 47, pp. 4044-4047, 1993.
    [75] M. Zorn, P. Kurpas, A. I. Shkrebtii, B. Junno, A. Bhattacharya, K. Knorr, M. Weyers, L. Samuelson, J. T. Zettler, and W. Richter,“Correlation of InGaP(001) Surface Structure During Growth and Bulk Ordering,”Physical Review B, vol. 60, pp. 8185-8190, 1999.
    [76] Y. Zhang, A. Mascarenhas, and L.-W. Wang,“Dependence of the Band Structure on the Order Parameter for Partially Ordered GaxIn1-xP Alloys,”Physical Review B, vol. 63, 201312, 2001.
    [77] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan,“Band Parameters for III–V Compound Semiconductors and Their Alloys,”Journal of Applied Physics, vol. 89, pp. 5815-5875, 2001.
    [78] S. Ozaki, S. Adachi, M. Sato, and K. Ohtsuka,“Ellipsometric and Thermoreflectance Spectra of (AlxGa1-x)0.5In0.5P Alloys,”Journal of Applied Physics, vol. 79, pp. 439-445, 1996.
    [79] D. J. Mowbray, O. P. Kowalski, M. Hopkinson, M. S. Skolnick, and J. P. R. David,“Electronic Band Structure of AlGaInP Grown by Solid‐Source Molecular‐Beam Epitaxy,”Applied Physics Letters, vol. 65, pp. 213-215, 1994.
    [80] S. P. Najda, A. H. Kean, M. D. Dawson, and G. Duggan,“Optical Measurements of Electronic Bandstructure in AlGaInP Alloys Grown by Gas Source Molecular Beam Epitaxy,”Journal of Applied Physics, vol. 77, pp. 3412-3415, 1995.
    [81] O. P. Kowalski, J. W. Cockburn, D. J. Mowbray, M. S. Skolnick, R. Teissier, and M. Hopkinson,“GaInP–AlGaInP Band Offsets Determined from Hydrostatic Pressure Measurements,”Applied Physics Letters, vol. 66, pp. 619-621, 1995.
    [82] I. Mártil and G. G. Díaz, “Determination of the Dark and Illuminated Characteristic Parameters of a Solar Cell from I-V Characteristics,”European Journal of Physics, vol. 13, pp. 193-197, 1992.
    [83] S. R. Kurtz, D. J. Friedman, J. Geisz, and W. McMahon,“Using MOVPE Growth to Generate Tomorrow’s Solar Electricity,”Journal of Crystal Growth, vol. 298, pp. 748-753, 2007.
    [84] T. Takamoto, Ph.D. dissertation, Toyota Technological Institute, 1999, cited by M. Yamaguchi, III–V Compound Multi-Junction Solar Cells: Present and Future, Solar Energy Materials and Solar Cells, vol. 90, pp. 3068-3077, 2006.
    [85] D. J. Friedman, S. R. Kurtz, A. E. Kibbler, and J. M. Olson,“Back Surface Fields for GaInP2 Solar Cells,”Proceedings of the 22nd IEEE Photovoltaic Specialists Conference, pp. 358–360, 1991.
    [86] N. H. Rafat, S. M. Bedair, P. R. Sharps, J. S. Hills, J. A. Hancock, and M. L. Timmons,“Back Surface Fields for n/p and p/n GaInP Solar Cells,”Proceedings of the 1st World Conference on Photovoltaic Energy Conversion, vol. 2, pp. 1906-1909, 1994.
    [87] R. R. King, P. C. Colter, K. M. Edmondson, D. C. Law, A. P. Stavrides, H. Yoon, J. H. Ermer, M. J. Romero, and N. H. Karam,“High-Efficiency Metamorphic GaInP/GaInAs/Ge Solar Cells Grown by MOVPE,”Journal of Crystal Growth, vol. 261, pp.341-348, 2004.
    [88] A. W. Bett, R. Adelhelm, C. Agert, R. Beckert, F. Dimroth and U. Schubert,“Advanced III–V Solar Cell Structures Grown by MOVPE,”Solar Energy Materials and Solar Cells, vol. 66, pp. 541-550, 2001.
    [89] I. García, I. Rey-Stolle, B. Galiana, and C. Algora,“A 32.6% Efficient Lattice-Matched Dual-Junction Solar Cell Working at 1000 Suns,”Applied Physics Letters, vol. 94, 053509, 2009.

    QR CODE
    :::