| 研究生: |
陳泓悅 Houng-Yue Chen |
|---|---|
| 論文名稱: |
熱流場對靜態刀具遮罩式微電化學加工的影響性 The Influence of Heat and Flow Field on Electrochemical - Micro Machining with a Static Tool |
| 指導教授: |
洪勵吾
Lih-Wu Hourng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 遮罩式電化學加工 、有限元素法 、模擬 |
| 外文關鍵詞: | through-mask ekectrichemical micro-machining (TMEMM), finite element method, simulation |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
遮罩式微電化學加工(Through-Mask Electrochemical Micro-machining,TMEMM)有別於一般微電化學加工(Electrochemical Micro-machining,EMM),所用之刀具不受成品形狀之影響,可在相同刀具下依成品之形狀改變遮罩形狀完成不同幾何外型之加工,可節省刀具設計費用。
現今之遮罩式微電化學加工之研究僅於電場模擬、或者實際加工後進行分析,然而實際上的微電化學加工過程是由相當複雜的物理現象組合而成,因此本文嘗試以有限元素法創建電場與熱流場之模型,討論加工時之施加電壓、電解液流速、電解液溫度、遮罩厚度對加工外型的影響。
模擬結果顯示,電壓越大,加工深度愈深,島狀比率上升;電解液流速愈低,加工區電解液溫度愈高,造成不對稱現象愈嚴重,島狀比率也會上升;遮罩厚度愈薄,遮罩之遮蔽能力愈差,局部電流密度愈大,加工深度愈深,島狀比率愈大。
Through-mask electrochemical micro machining (TMEMM) is different from the normalElectrochemical micro machining (EMM). The design expense of the electrode tool can be saved because the electrode tool won’t be affected by the shape of the ending product. Without changing the electrode tool, TMEMM can fulfill end product with any shape by only changing the shape of the electric insulated mask.
Nowdays, the researches on TMEMM simulation are restricted in the influence of electric field. However the process of EMM is the combination of complex physical phenomena. In this study, we try to implement the electric field model with temperature field and flow field by finite element method.The effect of working parameters, such as: applied voltage, velocity of electrolyte, temperature of electrolyte, mask thickness etc…, on the resulting shape are investigated.
Results show that, as the voltage is increased, the machining depth become deeper and the island ratio is higher. When the electrolyte velocity is slower, the electrolyte temperature in machining zone is higher, and the shape of machining zone becomes asymmetry and the island ratio becomes higher. If the mask is thinner, the shadow effect of the mask becomes worse and the portion current density is increased. Consequently the machining depth becomes deeper, and the island ratio becomes higher too.
[1] 楊龍杰著,認識微機電,滄海書局,台中市,2001年。
[2] 徐泰然著,微機電系統與微系統-設計與製造,朱銘祥譯,美商麥格羅‧希爾國際股份有限公司台灣分公司,台北市,2003年。
[3] B.Bhattacharyya,J. Munda and M. Malapati, “Advancement in electrochemical micro-machining,”International Journal of Machine Tools and Manufacture, Vol.44, No. 15, pp. 1577-1589, 2004.
[4] 黃暐倫,“利用遮罩式電化學加工製作穿孔之最佳化參數分析”,國立中央大學機械所,碩士論文,2016年。
[5] 陳千惠,“移動刀具之遮罩式微電化學加工模擬與分析”,國立中央大學機械所,碩士論文,2016年。
[6] X.L. Chen, N.S. Qu, H.S. Li and D. Zhu, “The fabrication and application of a PDMS micro through-holes mask in electrochemical micromanufacturing,” Advances in Mechanical Engineering, Vol. 6,Article ID 943092, 2014.
[7] M.Dattaand D. Landolt, “Fundamental aspects and applications of electrochemical microfabrication,” ElectrochimicaActa, Vol.45, No.15-16, pp.2535-2558, 2000.
[8] C.Vuik, and C.Cuvelier,“Numerical solution of an etching problem,” Journal of Computational Physics, Vol. 59, No.2, pp. 247-263, 1985.
[9] R. V.Shenoy and M. Datta, “Effect of mask wall angle on shape evolution during through‐mask electrochemical micromachining,”Journal of the Electrochemical Society, Vol. 143, No. 2, pp. 544-549, 1996.
[10] R. V.Shenoy,M. Datta and L.T. Romankiw, “Investigation of island formation during through‐mask electrochemical micromachining,”Journal of the Electrochemical Society, Vol. 143, No. 7,pp. 2305-2309, 1996.
[11] J.Liu,D.Zhu, N.S.Qu and H.S.Li, “Micro multiple holes produced by through-mask electrochemical machining in metal sheets,”Electromachining & Mould, Vol. 3, pp. 37-39, 2008.
[12] D. Zhu, N.S. Qu, H.S. Li, Y.B. Zeng, D.L. Li and S.Q. Qian, “Electrochemical micromachining of microstructures of micro hole and dimple array,”CIRP Annals-Manufacturing Technology, Vol. 58, No.1, pp.177-180, 2009.
[13] S.Q.Qian, D. Zhu, N.S. Qu, H.S. Li and D.S. Yan, “Generating micro-dimples array on the hard chrome-coated surface by modified through mask electrochemical micromachining,”The International Journal of Advanced Manufacturing Technology, Vol. 47, No.9, pp. 1121-1127, 2010.
[14] L.Wang, Q.D.Wang, X.Q.Hao, Y.C.Ding and B.H.Lu, “Finite element simulation and experimental study on the through-mask electrochemical micromachining (EMM) process,”The International Journal of Advanced Manufacturing Technology, Vol. 51, No.1, pp. 155-162, 2010.
[15] D.L.Li, D. Zhu and H.S. Li, “Microstructure of electrochemical micromachining using inert metal mask,”The International Journal of Advanced Manufacturing Technology, Vol. 55, No.1, pp. 189-194, 2011.
[16] A. Ivanov, “Simulation of electrochemical etching of silicon with COMSOL,”Proceedings of COMSOL Conference, Stuttgart, Germany,2011.
[17] A. Ivanov and U. Mescheder,“Dynamic simulation of electrochemical etching of silicon,”Proceedings of COMSOL Conference, Milan, Italy, 2012.
[18] A. Ivanov and U. Mescheder, “Primary current distribution model for electrochemical etching of silicon through a circular opening,”Proceedings of COMSOL Conference, Grenoble, France, 2015.
[19] C.Winkelmannand W. Lang,“Influence of the electrode distance and metal ion concentration on the resulting structure in electrochemical micromachining with structured counter electrodes,”International Journal of Machine Tools and Manufacture,Vol.72, pp.25-31, 2013.
[20] A. D.Davydov, T. B. Kabanovaaand V. M. Volgina, “Modeling of through-mask electrochemical micromachining,”Chemical Engineering, Vol.41, pp.85-90, 2014.
[21] N. Qu,X. Chen, H. Li and Y.Zeng,“Electrochemical micromachining of micro-dimple arrays on cylindrical inner surfaces using a dry-film photoresist,”Chinese Journal of Aeronautics, Vol.27, No. 4, pp. 1030-1036, 2014.
[22] X.L. Chen, N.S. Qu, H.S. Li and Z.N. Guoc, “Removal of islands from micro-dimple arrays prepared by through-mask electrochemical micromachining,”PrecisionEngineering,Vol. 39, pp. 204-211, 2015.
[23] S. Qian, and F. Ji,“Investigation on the aluminum-alloy surface with micro-pits array generating by through double mask electrochemical machining,”AASRI International Conference on Industrial Electronics and Applications, pp.59-62, London UK, 2015.
[24] V.K. Jainand D. Gehlot, “Anode shape prediction in through-mask-ecmm using FEM,”Machining Science and Technology, Vol. 19, No. 2, pp. 286-312, 2015.
[25] X. Zhang,N.Qu, H. Li and Z. Xu,“Investigation of machining accuracy of micro-dimples fabricated by modified microscale pattern transfer without photolithography of substrates,”The International Journal of Advanced Manufacturing Technology, Vol. 81, No.9, pp. 1475-1485, 2015.
[26] 田福助著,電化學-理論與應用,高立圖書有限公司,台北市,1996年。
[27] J. F.Thorpe and R. D. Zerkle, “Analytic determination of the equilibrium electrode gap in electrochemical machining,”International Journal of Machine Tool Design and Research, Vol. 9, No. 2, pp. 131-144, 1969.
[28] S.Hinduja and M. Kunieda. “Modelling of ECM and EDM processes,”CIRP Annals-Manufacturing Technology, Vol. 62, No. 2, pp.775-797, 2013.
[29] 中仿科技公司:COMSOL Multiphysics V4.x 几何建模用戶指南,2010年,取自:www.CnTech.com.cn。
[30] M. A.Bejar, and F. Gutierrez,“On the determination of current efficiency in electrochemical machining with a variable gap,” Journal of Materials Processing Technology,Vol. 37, No.1,pp.691-699, 1993.
[31] S. J. Lee, “COMSOL in electrochemical applications,” Proceedings of COMSOL Conference, Taipei, Taiwan, 2013.
[32] T. Isono, “Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures. Alkaline-earth chlorides, lanthanum chloride, sodium chloride, sodium nitrate, sodium bromide, potassium nitrate, potassium bromide, and cadmium nitrate,” Journal of Chemical and Engineering Data, Vol. 29, No. 1, pp. 45-52, 1984.