跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳義杰
Yi-jie Chen
論文名稱: 3A及4A吸附劑對水和乙醇吸附之實驗及吸附塔貫流行為之模擬
Adsorption experiment for water and ethanol on 3A and 4A zeolite and simulation of breakthrough performance in the bed
指導教授: 周正堂
Cheng-Tung Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 109
中文關鍵詞: 酒精乙醇貫流
外文關鍵詞: ethanol, water, breakthrough, dehydration
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在酒精和水的分離技術當中,由於一大氣壓下,酒精和水組成為95.6wt%乙醇時,在78.2℃會產生共沸點,而吸附分離相較於傳統共沸蒸餾或萃取蒸餾為一種較節能的程序,因此被廣泛注意將其運用在酒精脫水。本論文先利用實驗方式,藉由對純水和純酒精飽和吸附量的測量,使用3A和4A分子篩當作吸附劑,得到不同的吸附平衡數據。再藉由Langmuir等溫線吸附平衡關係式利用數學分析的方式,取得等溫吸附平衡曲線圖及其參數。最後利用模擬方式得到不同的貫流曲線,進料組成為18.2mol%水蒸汽和81.8mol%酒精蒸氣的混合氣體,使用3A和4A分子篩當作吸附劑,在單一吸附塔中進行模擬。研究中藉由改變不同的操作條件(如塔內壓力、塔內溫度及吸附塔塔長),探討各種變因對貫流行為的影響。結果發現當塔內溫度增加時,貫流時間會減少。而當塔內壓力、吸附塔塔長增加時,貫流時間則會增加。


    In the distillation separation of ethanol vapor and water vapor, it can form an azeotrope at 78.2℃, at which there are 95.6wt% ethanol and 4.4wt% water. Traditional azeotropic distillation and extractive distillation to obtain anhydrous ethanol need more energy than adsorption. Adsorption as a low energy consumption process has attracted attention to apply in ethanol dehydration. This study obtained single component adsorption equilibrium data by the adsorption experiment for water and ethanol on 3A and 4A zeolite. Then this study obtained the isotherm curve and the parameters by numerical method. The adsorption is expressed by the Langmuir isotherm. The isotherm is applied to analyze the effect of the variables such as bed pressure, bed temperature, and bed length on the breakthrough performance. The simulation results show that the breakthrough time decreased with increasing bed temperature, and the breakthrough time increased with increasing bed length and bed pressure.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章、緒論 1 第二章、簡介及文獻回顧 4 2-1簡介 4 2-1-1 吸附現象簡介 4 2-1-2 吸附程序簡介 5 2-1-3 吸附劑及其選擇性 6 2-1-4 等溫平衡吸附曲線 8 2-1-5 貫流曲線 10 2-1-6 變壓吸附基本操作步驟簡介 11 2-2文獻回顧 13 2-2-1 PSA程序之發展及改進 13 2-2-2 理論之回顧 16 2-3研究背景與目的 18 第三章、實驗 24 3-1實驗裝置 25 3-2實驗 29 3-2-1 實驗步驟 29 3-2-2 天平校正 30 3-2-3 空白實驗 30 第四章、理論 31 4-1基本假設 31 4-2統制方程式 32 4-3線性驅動模式 35 4-4參數推導 37 4-4-1 線性驅動質傳係數 37 4-4-2 軸向分散係數 41 4-5邊界條件與流速 42 4-5-1 邊界條件與節點流速 42 4-5-2 閥公式 43 第五章、實驗結果與討論 44 5-1空白實驗結果 44 5-2平衡吸附重量實驗結果與討論 51 5-2-1平衡吸附重量實驗結果 51 5-2-2不同吸附劑比較 56 第六章、貫流行為的程序描述 60 6-1等溫吸附曲線的迴歸 61 6-2貫流行為參數與操作條件 74 第七章、貫流行為之數據分析與結果討論 78 7-1塔內壓力對貫流行為的影響 79 7-2塔內溫度對貫流行為的影響 84 7-3吸附塔塔長對貫流行為的影響 89 第八章、結論 94 符號說明 95 參考文獻 98 附錄A、流速之估算方法 103 附錄B、Thermo Cahn D-110操作流程 107

    Al-Asheh, S., F. Banat and N. Al-Lagtah, “Separation of Ethanol-Water Mixtures Using Molecular Sieves and Biobased Adsorbents”, Chem. Eng. Res. Des., 82(A7), 855-864, 2004.
    Anderson, L.E., M. Gulati, P.J. Westgate, E.P. Kvam, K. Bowman and M.R. Ladisch, “Synthesis and Optimization of a New Starch-Based Adsorbent for Dehumidification of Air in a Pressure-Swing Dryer”, Ind. Eng. Chem. Res., 35(4), 1180-1187, 1996.
    Berlin, N.H., ”Method for Providing an Oxygen-Enriched Environment”, U.S. Patent 3,280,536, assigned to Esso Research and Engineering Company, 1966.
    Berry, K.E. and M. R. Ladisch, “Adsorption of Water from Liquid-Phase Ethanol-Water Mixtures at Room Temperature Using Starch-Based Adsorbents”, Ind. Eng. Chem. Res., 40(9), 2112-2115, 2001.
    Bird, R.B., W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, 2nd Ed., Wiley, New York, 2007.
    Carton, A., A.I. Torre, G. Gonzalez, J.L. Cabezas, ” Separation of Ethanol-Water Mixtures Using 3A Molecular Sieve”, Chem. Technol. Biotechnol., 39(2), 125-132, 1987.
    Chou, C.T., W.C. Huang and Anthony S.T. Chiang,“Simulation of Breakthrough Curves and a Pressure Swing Adsorption process of air separation”, Journal of The Chin. I. Ch.E., 23(1), 45-52, 1992.
    Doong, S.J., and R.T. Yang, “Hydrogen Purification by The Multi-Bed Pressure Swing Adsorption Process”, React. Polym., 6(1), 7-13, 1985.
    Doong, S.J., and R.T. Yang, "Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models", AIChE J., 32(3), 397-410, 1986.
    Doong, S.J., and R.T. Yang, "Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption", AIChE J., 33(6), 1045-1049, 1987.
    Farhadpour, F.A. and A. Bono, “Sorption Separation of Ethanol-Water Mixture With a Bi-dispersed Hydrophobic Molecular Sieve, Sillicalite: Determination of the Controlling Mass Transfer Mechanism”, Chem. Eng. Process, 35(2), 141-155, 1996.
    Farooq, S. and D.M. Ruthven, “A Comparison of Linear Driving Force and Pore Diffusion-Models for a Pressure Swing Adsorption Bulk Separation Process”, Chem. Eng. Sci., 45(1), 107-115, 1990.
    Fuller, E.N., P.D. Schettler, and J.C. Giddings, “A Comparison of Methods for Predicting Gaseous Diffusion Coefficients”, J. Gas Chromatogr., 3, 222-227, 1965.
    Fuller, E.N., P.D. Schettler, and J.C. Giddings, ”A New Method for Prediction of Binary Gas-Phase Diffusion Coefficients”, Ind. Eng. Chem., 58(5), 18-27, 1966.
    Garg, D.R. and J.P. Ausikaitis, “Molecular Sieve Dehydration Cycle for High Water Content Stream”, Chem. Eng. Prog., 79(4), 60-65, 1983.
    Gorbach, A., M. Stegmaier and G. Eigenberger, “Measurement and modeling of water vapor adsorption on Zeolite 4A-equilibria and kinetics”, Adsorption, 10 (1), 29–46, 2004.
    Guerin de Montgareuil, P. and D. Domine, “Process for separation a binary gaseous mixture by adsorption”, U.S. Patent 3,155,468, assigned to Societe L’Air Liquide, Paris, 1964.
    Hassan, M.M., D.M. Ruthven, and N.S. Raghavan, “Air Separation by Pressure Swing Adsorption on a Carbon Molecular Sieve”, Chem. Eng. Sci., 41(5), 1333-1343, 1986.
    Hassan, M.M., N.S. Raghvan, and D.M. Ruthven, “Pressure Swing Air Separation on a Carbon Molecular Sieve. II: Investigation of a Modified Cycle with Pressure Equalization and No Purge”, Chem.Eng. Sci., 42(8), 2037-2043, 1987.
    Heinze, G., Belgain Patent 613,267, assigned to Farbenfabriken Bayer A. G., 1962.
    Jee, J.G., M.B. Kim, and C.H. Lee, “Adsorption Characteristics of Hydrogen Mixtures in a Layered Bed: Binary, Ternary, and Five-Component Mixturess”, Ind. Eng. Chem. Res., 40(3), 868-878, 2001.
    Jones, R.L., G.E. Keller II and R.C. Wells, ”Rapid Pressure Swing Adsorption Process with High Enrichment Factor”, U.S. Patent 4,194,892, assigend to Union Carbide Corporation, 1980.
    Kowler, D.E., and R.H. Kadlec, “The Optimal Control Of a Periodic Adsorber: Part I. Experiment”, AIChE J., 31(6), 1207-1212, 1972.
    Ladisch, M.R., M. Voloch, J. Hong, P. Bienkowski and G.T. Tsao, “Cornmeal Adsorber for Dehydration Ethanol vapors”, Ind. Eng. Chem. Process Des. Dev., 23(3), 437-443, 1984.
    Lee, C.H., J. Yang, and H. Ahn, “Effects of Carbon-to-Zeolite Ratio on Layered Bed H2 PSA for Coke Oven Gas”, AIChE J., 45(3), 535-545, 1999.
    Marsh, W.D., F.S. Pramuk, R.C. Hoke, and C.W. Skarstrom, “Pressure Equalization Depressuring in Heatless Adsorption”,U.S. Patent 3,142,547, assigned to Esso Research and Engineering Company, 1964.
    Nakao, S., and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption”, J. Chem. Eng. Jpn., 16(2), 114-119, 1983.
    Park, J.H., J.N. Kim, and S.H. Cho, “Performance Analysis of Four-Bed H2 PSA Process Using Layered Beds”, AIChE J., 46(4), 790-802, 2000.
    Rao, D.R. and S. Sircar, “Liquid-phase Adsorption of Bulk Ethanol-Water Mixtures by Alumina”, Adsorpt., Sci. Technol., 10, 93-104, 1993.
    Perry, R.H., D.W. Green, and J.O. Maloney, Perry’s Chemical Engineers’ Handbook, Sixth Edition, McGraw-Hill, Inc., New York, 1984.
    Pitt, W.W., G.L. Hagg and D.D. Lee, “Recovery of Ethanol from Fermentation Broths Using Selective Sorption- Desorption”, Biothernol. Bioeng., 25(1), 123-131, 1983.
    Pruksathorn, P. and T. Vitidsant, “Production of pure ethanol from azeotropic solution by pressure swing adsorption”, Korean J. Chem. Eng., 26(4), 1106-1111,2009.
    Simo, M., C. J. Brown and V. Hlavacek, “Simulation of pressure swing adsorption in fuel ethanol production process”, Comput. Chem. Eng., 32(7), 1635-1649, 2008.
    Simo, M., S. Sivashanmugam, C. J. Brown, and V. Hlavacek, “Adsorption/Desorption of Water and Ethanol on 3A Zeolite in Near-Adiabatic Fixed Bed”, Ind. Eng. Chem. Res., 48, 9247–9260, 2009.
    Skarstrom, C.W., “Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption”, U.S. Patent 2,944,627, assigned to Esso Research and Engineering Company, 1960.
    Smith, J.M., and H.C. Van Ness, Introduction to Chemical Engineering Thermodynamics, Fourth Edition, McGraw-Hill, Inc., New York, 1987.
    Tamura, T., “Absorption Process for Gas Separation”, U.S. Patent 3,797,201, assigned to T. Tamura, Tokyo, Japan, 1974.
    Teo, W.K. and D.M. Ruthven, “Adsorption of Water from Aqueous Ethanol Using 3A Molecular Sieves”, Ind. Eng. Chem. Process Des. Dev., 25(1), 17-21, 1986.
    Turnock, P.H., and R.H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AIChE J., 17(2), 335-342, 1971.
    Vareli, G.D., P.G. Demertzis and K. Akrida-Demertzi, “Water and ethanol adsorption on starchy and cellulosic substrates as biomass separation systems”, Z Lebensm Unters Forsch A, 205(3), 204-208, 1997.
    Wakao, N. and T. Funazkri, “Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds. Correlation of Sherwood numbers”, Chem. Eng. Sci., 33(10), 1375–1384, 1978.
    Wen, C.Y., and L.T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975.
    陳穎信,「變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬」,國立中央大學,碩士論文,民國98年。

    QR CODE
    :::