| 研究生: |
呂紹新 Shao-hsin Lu |
|---|---|
| 論文名稱: |
降壓型轉換器之控制在市電併聯型光伏系統 Control of Buck Converter in Grid Connected Photovoltaic System |
| 指導教授: |
魏慶隆
Chin-Long Wey |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 最大功率點追蹤 、光伏系統 、電流源變流器 |
| 外文關鍵詞: | maximum power point tracking, photovoltaic system, current source inverter |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在探討市電併聯型光伏系統之設計且提出一最大功率演算法適用於前級轉換器控制電路並輸出交流電流滿足一般用電功率。在光伏系統中,前級採用降壓型轉換器,符合降壓升流,提高後級電流源變流器輸入電流的大小,並且針對兩倍瞬時功率的影響,傳統上使用電解電容來隔離交流訊號,本文於降壓型轉換器控制採用不同架構有效隔離交流市電的擾動,且減小電解電容的大小,使太陽能板維持穩定的輸出。後級採用電流源變流器,可以免除交流電流受輸出端交流市電的限制同時不用考量因為電壓源變流器為避免開關同時導通的空白時間設計。電流源變流器雖然控制簡單,但必須解決輸入電流源兩倍基頻諧波的問題,利用調整脈波寬度調變訊號以抵銷諧波訊號使輸出交流電流無低頻諧波。本文針對降壓型轉換器控制架構提出一最大功率演算法,有效達到最大功率點追蹤,使太陽能板維持最大功率輸出供後級電流源變流器轉換成交流電流。
This study presents a grid-connected photovoltaic system which is comprised of two stages: Buck DC/DC Converter and Current Source Inverter (CSI). The converter is used to buck the voltage and boost the current and provides a stable input power to the next stage. Conventionally, the electrolytic capacitor is used to isolate the disturbance caused by the ac output signals. The proposed control mechanism to the converter achieves an effective isolation from the grid-connected system, and also significantly reduces the size of electrolytic capacitor, so that the photovoltaic system provides a stable output. On the other hand, the CSI implements the inverter stage with a simpler control mechanism and has the inherent short circuit protection and the rapidness in system control. This study also proposes a simple way to obtain a reference voltage which makes sure the photovoltaic array to operate at the maximum power point.
[1] W. Xiao, W. G. Dunford, and A. Capel, “A novel modeling method for photovoltaic cells,” in Proc. IEEE Power Electron. Spec. Conf.(PESC), vol. 3, pp. 1950-1956, June. 2004.
[2] M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays,” IEEE Trans. on Power Electronics., vol. 24, no. 5, pp. 1198-1208, May. 2009.
[3] T. Esram, and P.L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439-449, June. 2007.
[4] R. Faranda, S. Leva, “Energy comparison of MPPT techniques for PV systems,” WSEAS Trans. on Power Systems, vol.3, no.6 , pp. 446-455, 2008.
[5] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. on Power Electronic, vol. 20, no. 4, pp. 963-973, July. 2005.
[6] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimizing sampling rate of P&O MPPT technique,” IEEE Power Electron. Spec. Conf (PESC). vol. 3 , pp. 1945-1949, June. 2004.
[7] G. J. Yu, Y. S. Jung, J. Y. Choi, I. Choy, J. H. Song and G. S. Kim, “A novel two-mode MPPT control algorithm based on comparative study of existing algorithms,” in Proc. IEEE Photovol. Spec.Conf., no. 19-24, pp. 1531-1534. , May. 2002.
[8] K. H. Hussein and I. Mota, “Maximum photovoltaic power tracking: An algorithm for rapidly changing atmospheric condition,” Proc. Inst. ElectrEng. Gener., Transmiss. Distrib., vol. 142, no. 1, pp. 59-64, Jan. 1995.
[9] G. W. Hart, H. M. Branz, and C. H. Cox, “Experimental tests of open loop miximum power point tracking techniques,” Solar Cells, pp. 185, 1984.
[10] K. Kobayashi, H. Matsuo, and Y. Sekine, “A novel optimum operating point tracker of the solar cell power supply system,” IEEE Power Electron. Spec. Conf.(PESC), vol. 3. pp. 2147-2151, June. 2004.
[11] B. Bekker and H. J. Beukes, “Finding an optimal PV panel maximum power point tracking method,” 7th AFRICON Conf. Africa, , vol. 2, pp. 1125-1129, Sept. 2004.
[12] T. Noguchi, S. Togashi, and R. Nakamoto, “Short-current pulse based adaptive maximum-power-point tracking for photovoltaic power generation systems,” in Proc. IEEE Int. Symp. Ind. Electron., vol.1,pp.157-162, Dec. 2000.
[13] N. Mutoh, T. Matuo, K. Okada, and M. Sakai, “Prediction data based maximum power point tracking method for photovoltaic power generation systems,” IEEE Power Electron. Spec. Conf.(PESC),vol. 3., pp. 1489-1494, Nov. 2002.
[14] S.Yuvarajan and S. Xu, “Photovoltaic power converter with a simple maximum power point tracker,” Proc. Int. Symp. Circuits Syst., pp. III-399-III-402, 2003.
[1
5] M. Park and I. K. Yu, “A study on optimal voltage for MPPT obtained by surface temperature of solar cell,” in Proc. 30th Annu. Conf. IEEE Ind. Electron. Soc., pp. 2040-2045, Nov. 2004.
[16] F. Coelho, M. Concer, C. Martins, “A MPPT approach based on temperature measurements applied in PV systems,” IEEE International Conference on Industry Applications.(IAS), pp. 1-6, Nov. 2010.
[17] Y. K. Lo, J. M. Wang and K. J. Pai, "Improved commutation method for a full-bridge current-source inverter,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 961-963, Feb. 2008.
[18] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics-Converters, Applications, and Design, 3rd edition , John Wiley & Sons, 2003.
[19] S. B. Kjaer, K. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. Ind. Appl., vol. 41(5), pp. 1292-1306, Sep./Oct. 2005
[20] T. Shimizu, K. Wada, and N. Nakamura, “A flyback-type single phase utility interactive inverter with low-frequency ripple current reduction on the DC input for an AC photovoltaic module system,” IEEE Power Electron. Spec. Conf.(PESC), vol. 3, pp. 1483-1488, Jun. 2002.
[21] S. B. Kjaer and F. Blaabjerg, “Design optimization of a single phase inverter for photovoltaic applications,” IEEE Power Electron. Spec. Conf.(PESC), vol. 3,pp. 1183-1190, Jun. 2003.
[22] S. Khajehodin, A. Bakhshai, P. Jain, and J. Drobnik, “A robust power decoupler and maximum power point tracker topology for a grid-connected photovoltaic system,” IEEE Power Electron. Spec. Conf.(PESC), pp. 66-69, June. 2008.
[23] S. B. Kjaer, “Design and control of an inverter for photovoltaic applications,” Ph.D. dissertation, Inst. Energy Technol., Aaborg University, Aaborg East, Denmark, 2002.
[24] J. Espinoza, G. Joos, and P. Ziogas, “Current source converter on-line pattern generator with switching frequency minimization,” IEEE Trans. Ind. Electron., vol. 44(2),pp. 198-206, Apr. 1997.
[25] G. Ledwich, “Current source inverter modulation,” IEEE Trans. on Power Electronic., vol. 6(4),pp. 618-623, Oct. 1991.
[26] D. N. Zmood and D. G. Holmes, “A generalized approach to the modulation of current source inverters,” IEEE Power Electron. Spec. Conf.(PESC), vol. 1, pp. 739-745, May. 1998.
[27] S. Wei and A. Maswood, “A novel current source PWM drive topology with specific harmonic elimination switching patterns,” IEEE Power Eng. Rev.,vol. 20(12), pp.53-55, Dec. 2000.
[28] J. Sun, S. Beineke, and H. Grotstollen, “Optimal PWM based on real-time solution of harmonic elimination equations,” IEEE Trans. on Power Electronics, vol. 11, no. 4, pp. 612-621, July. 1996.
[29] K. Hirachi and Y. Tomokuni, “Improved control strategy to eliminate the harmonic current components for single-phase PWM current source inverter,” in Proc. Int. Telecommun. Energy Conf., pp. 189-194, Oct. 1997,
[30] R. T. H. Li , H. S. Chung and T. K. M. Chan, ”An active modulation technique for single-phase grid-connected CSI,” IEEE Trans. on Power Electronics., vol. 22, no. 4, pp. 1373-1382, Jul. 2007.