| 研究生: |
黃至祺 Chih-Chi Huang |
|---|---|
| 論文名稱: |
適用於低頻寬無線傳輸之智慧型監控系統 For low-bandwidth wireless transmission intelligent monitoring system |
| 指導教授: |
蔡宗漢
Tsung-Han Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 影像辨識 、無線傳輸 |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
智慧家庭生活是一種趨勢,不僅是年輕一代,在中年老年人間也愈來愈受歡迎。智慧家庭當中 ,無線網路、感測器和中央伺服器扮演著重要的腳色,感測器利用無線網路傳送重要的資訊給中央伺服器判斷,來達成電器控制,控制環境,安全監控的功能。
雖然有許多不同的感測器,但是卻很少出現攝影機,原因是影像的資訊量過於龐大,在無線傳輸的傳輸率下是種挑戰,為了達成這個目標,我們將攝影機擷取到的資訊先分離出前景,然後使用tracking的演算法抓住物件,接著在使用一個專門壓縮前景的演算法做高倍率的binary壓縮,再透過無線傳輸,這樣我們的中央伺服器即可還原物件的輪廓,再透過地圖資訊的資料,我們可以定位出家庭裡的物件資訊。
在此篇論文中我們將使用攝影機加上linux的嵌入式平台,來模擬感測器搭,再配無線通訊模組,並且使用PC來當作中央伺服器,來實現智慧家庭的功能,我們使用320*240的影像大小,成功的達成一秒8張以上的處理速度。
Smart Home is a trend, not only the younger generation, in the elderly is also increasing in popularity among. In the smart home, wireless networks, sensors and the central server plays an important role, sensors send over the wireless network is important information to the central server judgment, to achieve electrical control, control environment, security and surveillance.
Although there are many different sensors, but few cameras because the image is too large amount of data, the transmission in the wireless transmission rate is a challenge, in order to achieve this goal, we will segmentation the foreground image, and then using a special algorithm do high performance binary compression, then through the wireless transmission, the central server can restore contour of the object, and then use map information data, we can locate objects in the family.
In this paper we will use the video camera and embedded linux platform to simulate sensors with wireless communication module, and to
use the PC as a central server, to achieve the smart home features, we use 320 * 240 image size, the success of reaching more than 8fps.
[1] R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change detection algorithms: a systematic survey,” IEEE Trans. Image Process., vol. 14, no. 3, pp. 294–307, Mar. 2005.
[2] D. A. Migliore, M. Matteucci, and M. Naccari, “View-based detection and analysis of periodic motion,” in Proc. 4th ACMInt.Workshop VideoSurveill. Sensor Netw., pp. 215–218, Oct. 2006.
[3] T. Aach and A. Kaup, “Bayesian algorithms for change detection in image sequences using Karkov random fields,” Sig. Proc: Im. Comm., 7(2): 56–61, 1995.
[4] L. Li and M. Leung, “Integrating intensity and texture differences for robust change detection,” IEEE Trans. Image Processing, vol. 11, pp. 105–112, Feb. 2002.
[5] S.-Y. Chien, S.-Y. Ma, and L.-G. Chen, “Efficient moving object segmentation algorithm using background registration technique,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 7, pp. 577–586, Dec. 2002.
[6] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for real-time tracking,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 246–252, 1999.
[7] O. Javed, K. Shafique, and M. Shah, “A hierarchical approach to robust background subtraction using color and gradient information,” in Proc. IEEE Workshop Motion Video Computing, pp. 22–27, Dec. 2002.
[8] Q. Zang and R. Klette, “Robust background subtraction and maintenance,” Proc. Int’l Conf. Pattern Recognition, vol. 2, pp. 90-93, 2004
[9] T.-H. Tsai, W.-T. Sheu and C.-Y. Lin, "Foreground Object Detection based on Multi-model Background Maintenance,” IEEE International Symposium on Multimedia, Taiwan, 2007.
[10] P.-M. Jodoin, M. Mignotte, and J. Konrad, “Statistical Background subtraction using spatial cues,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 12, pp. 1758–1763, Dec. 2007.
[11] D.-S. Lee, "Effective Gaussian Mixture Learning for Video Background Subtraction," IEEE Transactions on Pattern Analysis and Maching Intelligence, vol. 27, no. 5, MAY 2005.
[12] T.-H. Tsai, W.-T. Sheu and C.-Y. Lin, "Foreground Object Detection based on Multi-model Background Maintenance”, IEEE International Symposium on Multimedia, Taiwan, 2007.
[13] Lionel Lacassagne,Maurice Milgram, Patrick Garda, "Motion detection, labeling, data association and tracking, in real-time on RISC computer” 1Laboratoire des Instruments et Systemes Universite Pierre et Marie Curie BC 252.
[14] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer, "Kernel-based object
tracking" IEEE Trans. Pattern Analysis and Machine Intelligence, 2003, vol. 25, no. 5, pp. 564-575.
[15] Zulfiqar Ali. Sibtul Hussain, Imtiaz A. Taj, Patrick Garda, "Kernel Based Robust Object Tracking Using Model Updates and Gaussian Pyramids” Army Public College Of Management and Sciences (APCOMS).
[16] Hong-xiang DUAN, Qiu-yu ZHANG, Wei MA, Patrick Garda, "An Approach to Dynamic Hand Gesture Modeling and Real-time Extraction” .
[17] Hao Sung, , Wen-Yan Kuo, "A Skip-line with Threshold Algorithm for Binary Image Compression” , 2010 3rd International Congress on Image and Signal Processing.
[18] Tsung-Han Tsai, Chih-Hao Chang , Chih-Chi Huang, "INTELLIGENT BIRD'S-EYE VIEW SURVEILLANCE SYSTEM FOR DUAL-CORE PLATFORM” , Conference on Computer Vision, Graphics, and Image Processing (CVGIP), Nantou, Taiwan, Aug. 2012.