跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張煒堃
Wei-Kun Chang
論文名稱: 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射
Pulsed orange, green, and red laser generations in an actively Q-switched Nd:YVO4 laser using cascaded electro-optic PPLN Q-switches
指導教授: 陳彥宏
Yen-Hung Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 97
語文別: 中文
論文頁數: 83
中文關鍵詞: Q調制鈮酸鋰電光週期性晶格極化反轉
外文關鍵詞: Q-switch, PPLN, EO, Nd:YVO4
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用摻雜釹的固態雷射以腔內倍頻的方法可以有效的得到藍、綠和紅光。但
    光譜在550 到650-nm 之黃橘光雷射卻相對稀少且低效率;而欲以倍頻方式產生
    也因無相對之高效率紅外基頻雷射而不可得。因此利用對摻雜釹的固態雷射其兩
    個重要的發射譜線4F3/2 – 4I11/2 (?~1.06 ?m) 及 4F3/2 - 4F13/2 (?~1.3 ?m)以腔內
    或腔外和頻的方式產生黃橘光的雷射已成為重要的方法。黃橘光雷射源特別在生
    物醫藥、光達、天文及軍事等應用上受到重視。而脈衝式黃橘光雷射更可因其高
    重複率與高功率的特性而提供更廣大的應用。
    本論文創新性提出以單塊串級式電光週期性晶格極化反轉鈮酸鋰
    (periodically poled lithium niobate; PPLN)來分別Q-調制Nd:YVO4之1064-nm
    與1342-nm 雷射譜線並同時調節該兩譜線之損益比例及Q-開關時間差以達成最
    佳之雙波長脈衝及黃橘光和頻產生。此法將比傳統上使用單一Q-開關系統產生出
    更高效率之脈衝黃橘光雷射源。在單塊晶體3-cm 的長度之下,當Q 調制訊號只
    輸入任一Q-開關時,除了可得對應之共振雷射脈衝,還有藉由鈮酸鋰晶體非線性
    性質產生非相位匹配產生的倍頻脈衝。在約五瓦特的泵浦下,1-kHz 的重複開關
    頻率,可得1342-nm 最短脈寬26.96-ns 和尖峰功率14 千瓦特以及671-nm 最短
    脈寬15.2-ns 和尖峰功率8.6 瓦特;抑或得到1064-nm 最短脈寬14.95-ns 和尖峰
    功率18.5 千瓦特以及532-nm 最短脈寬9.26-ns 和尖峰功率20.6 瓦特。 再利用BIBO 腔內和頻晶體在雙Q-開關之Q 調制訊號延遲25-ns 時,得到和頻593-nm 最
    短脈寬5.83-ns 和尖峰功率140 瓦特。


    Intracavity frequency doubling in an Nd-laser system has become one
    of the most efficient methods of producing blue, green, and red coherent
    lights. However, no practical laser sources yet currently available in
    the yellow-orange (570-620-nm) spectral region, nor applicable
    fundamental infrared lasers for performing efficient frequency doubling
    to the region. Sum frequency generation (SFG) of two emission lines from
    transitions 4F3/2 – 4I11/2 (?1~1.06 ?m) and 4F3/2 - 4F13/2 (?2~1.3 ?m) of Nd-lasers
    has become an important approach of generating coherent radiation in the
    yellow-orange spectral region. Compact, high-repetition-rate pulsed
    visible coherent light sources are attractive for many applications such
    as bio-medicine, remote-sensing, astronomy, and military.
    We achieved in a collinear three-mirror dual-wavelength Nd:YVO4 laser
    system using two monolithically cascade electro-optic (EO) periodically
    poled lithium niobate (PPLN) Q-switches to separately control the
    Q-switching operation of the two wavelengths to optimize the temporal
    overlap between them for efficient pulsed intracavity sum-frequency
    generation. With this novel system, we can generate 5 high peak-power and high repetition-rate lasers radiating at Nd:YVO4 1064- and 1342-nm lines
    and their non-phase-matched SHG 532- and 671-nm light and their
    phase-matched SFG 593-nm light via the manipulation of the Q-switching
    operations of the 3-cm bulk EO PPLN Q switches. We found a pulse build-up
    delay time of ~25 ns between the two pump wavelengths is required for
    achieving the best SFG efficiency in our system. When the system is
    operated at a repetition rate of 1 kHz and a pump power of ~5W, we obtained
    pulsed orange (593 nm), green (532 nm), and red (671 nm) generations with
    peak powers of 140, 20.6, and 8.6 W, respectively.

    第一章 緒論...........................................1 1.1發展與歷史.........................................1 1.2鈮酸鋰晶體.........................................2 1.3雷射增益介質-Nd:YVO4...............................4 1.4研究動機......................................... 5 1.5概述索爾克濾波器來製作電光調制機制.................10 1.6利用摻雜Nd3+的机才製作整合性雷射原件..............11 1.7內容概要..........................................14 第二章 理論..........................................15 2.1電光效應...........................................15 2.1.1利用電光效應製作索爾克濾波器.....................15 2.1.2在具有電光係數的鈮酸鋰晶體上製作索爾克濾波器.....21 2.2共振腔品質係數調制.................................24 2.3利用二階非線性細數達成和頻機制.....................33 2.3.1利用BIBO達成和頻的機制...........................35 2.3.2Q-switch下和頻的機制.............................38 第三章 製程與架構.....................................42 3.1電光晶體的設計.....................................42 3.2電光晶體的製備.....................................42 第四章 實驗量測與結果分析.............................46 4.1實驗架構...........................................47 4.2實驗結果...........................................50 4.3結果分析...........................................62 第五章 結論與未來展望.................................63 5.1結論...............................................63 5.2未來展望...........................................64 第六章 參考文獻.......................................68

    [1.1] Schawlow, A. L.; Townes, C. H.," Infrared
    and Optical Masers"Physical Review, vol. 112, Issue 6, pp.
    1940-1949 (1958)
    [1.2] Physics Today, pp.72 Oct. 2007
    [1.3] W. H. Zachariasen,Skr. Norske Vid-Ada.,Oslo,Mat.
    Naturv. No.4 (1928)
    [1.4] B. T. Matthias and J. P. Remeika, “Ferroelectricity in
    the illmenite structure”,Phys. Rev. 76 (1949) 1886.
    [1.5] A. A. Ballman, “Growth of piezoelectric and
    ferroelectric materials by the Czochralski technique”, J.
    American Ceram. Soc. 48 (1965) 112.
    [1.6] 胡明理, ” Zn:LiNbO3 之晶體生長與其特性研究”, 中央大
    學(2004)
    [1.7] Dieter H. Jundt,"Temperature-dependent Sellmeier
    equation for the index of refraction, ne, in congruent
    lithium niobate",Opt. Lett. Vol. 22, No. 20, 1553-1555
    (1997)
    [1.8] Huaijin Zhang, Xianlin Meng, Li Zhu, Changqing Wang ,
    Y.T. Chow, Mengkai Lu, " Growth, spectra and infuence of
    annealing efect on laser properties of Nd:YVO4 crystal",
    Optical Materials 14,25-30 (2000)
    [1.9] Jirí Janousek, Sandra Johansson, Peter
    Tidemand-Lichtenberg, Shunhua Wang, Jesper L. Mortensen,
    Preben Buchhave and Fredrik Laurell, “Efficient all
    solid-state continuous-wave yellow-orange light source,”
    Optics Express, 13, p1188-1192(2005)
    [1.10] k.w. Su, y.t. Chang,y.f. Chen,"Power scale-up of the
    diode-pumped actively Q-switched Nd:YVO4 Raman laser with
    an undoped YVO4 crystal as a Raman shifter", Appl. Phys.
    B 88, 47–50 (2007)
    [1.11] George A. Henderson, "A computational model of a
    dual-wavelength solid-state laser", J. Appl. Phys. 68(11),
    5451(1990)
    [1.12] http://www.ni.com/fpga/
    [1.13] Amnon Yariv and Pochi Yeh, "Optical waves in crystals",
    Ch. 5.3.1, 132(1984)
    [1.14] J. A. ARMSTRONG, N. BLOEMBERGEN, J. DUCUING,! AND P. S.
    PERSHAN, "Interactions between Light Waves in a NonlinearDielectric", Phys. Rev. Vol. 127, No. 6, 1918-1939(1962)
    [1.15] D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M.
    Henderson, T. K. Plant,R. R. Stephens, and C. M. Walker,
    Appl. Phys. Lett. 34, 391 (1979).
    [1.16] Jianhong Shi, Xianfeng Chen, Yuxing Xia, Yingli Chen,
    "Electro-optical polarization controller based on solc
    filter in periodically poled lithium niobate", SPIE Vol.
    4905, 490-496 (2002)
    [1.17] Y. H. Chen and Y. C. Huang, "Actively Q-switched Nd:YVO4
    laser using an electro-optic periodically poled lithium
    niobate crystal as a laser Q-switch", Opt. Lett. Vol.28,
    No. 16, 1460-1462(2003)
    [1.18] Y. H. Chen, Y. C. Chang, C. H. Lin, and T. Y. Chung,
    "Diode-pumped, actively internal-Q-switched Nd:MgO:PPLN
    laser", Opt. Exp. Vol. 16, No. 3, 2048-2055 (2008)
    [1.19] Y. H. Chen, W. K. Chang, C. L. Chang, and C. H. Lin,
    "Single aperiodically poled lithium niobate for
    simultaneous laser Q switching and second-harmonic
    generation in a 1342 nm Nd:YVO4 laser", Opt. Lett. Vol. 34,No. 11, 1711-1713(2009)
    [1.20] Ben-Yuan Gu, Yan Zhang, Bi-Zhen Dong, "Investigations
    of harmonic generations in aperiodic optical
    superlattices", J. Appl. Phys. 87 pp. 7629-7637 (2000)
    [2.1] R. Dunsmuir, Theory of Relaxation Oscillations in
    Optical Masers, J. Electron Control 10,786-458(1961)
    [3.1] Gregory David Miller, “Periodically poled lithium
    niobate: Modeling, fabrication, and nonlinear-optical”,
    Stanford university (1998)

    QR CODE
    :::