跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊詠森
Yong-Sen Yang
論文名稱: 於近化學計量條件之預混氨/空氣火焰最小引燃能量量測使用奈秒重覆脈衝放電
Measurements of Minimum Ignition Energy for Premixed Ammonia/Air Flames Near-Stoichiometry Condition Using Nanosecond Repetitively Pulsed Discharges
指導教授: 施聖洋
Shenq-Yang Shy
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 57
中文關鍵詞: 奈秒重覆脈衝放電最小引燃能量當量比效應紊流效應紊流效應、最小引燃能量轉變
外文關鍵詞: nanosecond repetitively pulsed discharges, minimum ignition energy, equivalent ratio effect, turbulence effect, minimum ignition energy transition
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用奈秒重覆脈衝放電(Nanosecond Repetitively Pulsed Discharges, NRPD),針對氨氣/空氣混合燃氣在當量比 = 1、固定電極間距dgap = 2 mm及重覆脈衝頻率PRF = 40 kHz之條件下,量測最小引燃能量(Minimum Ignition Energy, MIE)隨均方根擾動速度(u′)之變化關係,MIE為具50%引燃機率的能量。引燃實驗在一大型高壓雙腔體之十字型預混紊流燃燒器中進行,其腔體正中心處設有一對不銹鋼之尖端電極以進行放電,且在大水平圓管腔體兩側各裝有一風扇,可透過反向旋轉特製扇葉在中心處產生一近似等向性紊流場。首先,在層流條件下,使用不同當量比( = 0.9、1.0和1.1)來進行層流MIE (MIEL)之量測,結果顯示,MIEL = 80.4, 72.6 和71.8 mJ 在  = 0.9, 1.0和1.1,即MIEL值會隨著值的增加而下降。再者,我們選擇  = 1.0的條件,進行紊流MIE (MIET)之量測,我們找到一MIE轉變,即在u′小於一臨界u′c ≈ 1 m/s時,MIET值會隨著u′的增加而緩慢上升,但當u′ > u′c時,MIET值則會隨u′值增加而急遽攀升。同樣地,本研究也有找出氨氣之正規化MIET/MIEL與火核反應區Péclet數(Pe = u′k/RZ)之關係,其中k為Kolmogorov長度尺度,RZ (≈ SLδRZ)為反應區熱擴散係數,SL為層流火焰速度,δRZ為層流火焰厚度,並發現其臨界Pec ≈ 4.4,與本實驗室之前量測到的甲烷/空氣(Pec ≈ 4.5)及汽油替代燃料(Pec ≈ 4.2)之結果接近。最後,在電極間距dgap = 1 mm時,即使使用數千個NRPD脈衝(總能量約為2 J),也無法成功引燃在化學計量之氨氣/空氣混合燃氣。前述結果,對以氨為燃料正發展中發電用之燃氣輪機的引燃,應有所助益。


    This thesis measures the minimum ignition energy (MIE) of the stoichiometric ammonia/air mixture as a function of root-mean-square (r.m.s) turbulent fluctuation velocities (u′). Using nanosecond repetitively pulsed discharges (NRPD) via a pair of stainless-steel electrodes with sharp ends at a fixed inter-electrode gap (dgap = 2 mm) and at a fixed pulsed repetitive frequency (PRF = 40 kHz). Ignition experiments are conducted in a dual-chamber, fan-stirred cruciform burner capable of generating near-isotropic turbulence. First, values of laminar MIE (MIEL) are measured at three different equivalence ratios ( = 0.9, 1.0 and 1.1 );MIEL decreases with increasing , MIEL = 80.4, 72.6 and 71.8 mJ at  = 0.9, 1.0 and 1.1, respectively。Second, at the selected  = 1.0, a MIE transition is found. When u′ is less than a critical value of u′c ≈ 1 m/s, turbulent MIE (MIET) only increases gradually with increasing u′. But when u′ > u′c, a drastic increase of MIET is observed. We also find a function of normalized MIET/MIEL and Péclet number (Pe = u′k/RZ) for ammonia/air mixture, where k is the Kolmogorov length scale and the reaction zone thermal diffusivity RZ (≈ SLδRZ);SL is the laminar burning velocity and δRZ is the laminar flame thickness. It is found the critical Pec occurs at a value of about 4.4 which is very close to the methane/air mixture (Pec ≈ 4.5) and the primary reference automobile fuel/air mixture (Pec ≈ 4.2) our laboratory done before. Finally, when dgap = 1 mm, even using several thousands of NRPD pulses (total energy ~ 2J) cannot ignite the ammonia/air mixture at  = 1.0 and at PRF = 40 kHz. These results may be useful to our understanding of ignition for the developing ammonia gas turbines for electricity generation.

    目錄 中文摘要 i Abstract iii 誌謝 v 目錄 vi 圖目錄 viii 表目錄 ix 符號說明 x Greek Symbol xi 第一章 前言 1 1.1 研究動機 1 1.2 探討問題 2 1.3研究目標 3 1.4 論文架構 4 第二章 文獻回顧 5 2.1 氨的特性及應用 5 2.2 電漿(Plasma)型態及其反應機制 7 2.3 非平衡態電漿對於引燃的促進機制 9 2.4奈秒重覆脈衝放電(NRPD)促進引燃機制 11 2.5 定義成功引燃與最小引燃能量(MIE)的量測 14 2.6最小引燃能量轉變(MIE Transition) 15 第三章 實驗設備與測量方法 16 3.1 實驗設備 16 3.1.1 高溫高壓十字型預混紊流燃燒設備 16 3.1.2 影像擷取系統 18 3.1.3 奈秒重複脈衝放電 19 3.2 奈秒重覆脈衝放電之最小引燃能量量測 21 3.3 燃氣當量比計算 23 3.4 實驗步驟 25 第四章 結果與討論 27 4.1氨火焰影像擷取 27 4.2 層流條件下不同當量比之MIE 28 4.3 氨氣的最小引燃能量轉變過程(MIE Transition) 29 第五章 結論與未來工作 36 5.1 結論 36 5.2未來工作 37 參考文獻 38

    [1] P. Dimitriou, R. Javaid, A review of ammonia as a compression ignition engine fuel, Int. J. Hydrog. Energy 45 (2020) 7098-7118.
    [2] J.S. Cardoso, V. Silva, R.C. Rocha, M.J. Hall, M. Costa, D. Eusébio, Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines, J. Clean. Prod. 296 (2021) 126562.
    [3] M. Comotti, S. Frigo, Hydrogen generation system for ammonia–hydrogen fuelled internal combustion engines, Int. J. Hydrog. Energy, 40 (2015) 10673-10686.
    [4] A.V. Medina, S. Morris, J. Runyon, D.G. Pugh, R. Marsh, P. Beasley, T. Hughes, Ammonia, Methane and Hydrogen for Gas Turbines, Energy Procedia 75 (2015) 118-123.
    [5] D. Pashchenko, R. Mustafin, I. Karpilov, Ammonia-fired chemically recuperated gas turbine: Thermodynamic analysis of cycle and recuperation system, Energy 252 (2022) 124081.
    [6] M. Keller, M. Koshi, J. Otomo, H. Iwasaki, T. Mitsumori, K. Yamada, Thermodynamic evaluation of an ammonia-fueled combined-cycle gas turbine process operated under fuel-rich conditions, Energy 194 (2020) 116894.
    [7] B. Wang, T. Li, F. Gong, M.H.D. Othman, R. Xiao, Ammonia as a green energy carrier: Electrochemical synthesis and direct ammonia fuel cell - a comprehensive review, Fuel Process. Technol. 235 (2022) 107380.
    [8] T.Q. Quach, V.T. Giap, D.K. Lee, T.P. Israel, K.Y. Ahn, High-efficiency ammonia-fed solid oxide fuel cell systems for distributed power generation, Appl. Energy 324 (2022) 119718.
    [9] M. Ilbas, B. Kumuk, M.A. Alemu, B. Arslan, Numerical investigation of a direct ammonia tubular solid oxide fuel cell in comparison with hydrogen, Int. J. Hydrog. Energy 45 (2020) 35108-35117.
    [10] D. Frattini, G. Cinti, G. Bidini, U. Desideri, R. Cioffi, E. Jannelli, A system approach in energy evaluation of different renewable energies sources integration in ammonia production plants, Renew. Energ. 99 (2016) 472-482.
    [11] J. Armijo, C. Philibert, Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina, Int. J. Hydrog. Energy 45 (2020) 1541-1558.
    [12] Hybrid LNG & Ammonia Infrastructure: Key to a Green Economy, Black & Veatch, 2020. https://www.bv.com/resources/hybrid-lng-ammonia-infrastructure-key-green-economy-ebook.
    [13] H. Lesmana, M. Zhu, Z. Zhang, J. Gao, J. Wu, D. Zhang, An experimental investigation into the effect of spark gap and duration on minimum ignition energy of partially dissociated NH3 in air, Combust. Flame 241 (2022) 112053.
    [14] S.S. Shy, W.T. Shih, C.C. Liu, More on minimum ignition energy transition for lean premixed turbulent methane combustion in flamelet and distributed regimes, Combust. Sci. Technol. 180 (2008) 1735-1747.
    [15] S.S. Shy, C.C. Liu, W.T. Shih, Ignition transition in turbulent premixed combustion, Combust. fiame 157 (2010) 341-350.
    [16] M.W. Peng, S.S. Shy, Y.W. Shiu, C.C. Liu, High pressure ignition kernel development and minimum ignition energy measurements in different regimes of premixed turbulent combustion, Combust. Flame 160 (2013) 1755-1766.
    [17] L.J. Jiang, S.S. Shy, M.T. Nguyen, S.Y. Huang, D.W. Yu, Spark ignition probability and minimum ignition energy transition of the lean iso-octane/air mixture in premixed turbulent combustion, Combust. Flame 187 (2018) 87-95.
    [18] S.S. Shy, M.T. Nguyen, S.Y. Huang, Effects of electrode spark gap, differential diffusion, and turbulent dissipation on two distinct phenomena: Turbulent facilitated ignition versus minimum ignition energy transition, Combust. Flame 205 (2019) 371-377.
    [19] L. Haar, J.S. Gallagher, Thermodynamic properties of ammonia, J. Phys. Chem. Ref. Data 635 (1978)
    [20] Y. Feng, J. Zhu, Y. Mao, M. Raza, Y. Qian, L. Yu, X. Lu, Low-temperature auto-ignition characteristics of NH3/diesel binary fuel: Ignition delay time measurement and kinetic analysis, Fuel 281 (2020) 118761.
    [21] J. Yang, W. Weng, W. Xiao, Electrochemical synthesis of ammonia in molten salts, J. Energy Chem. 43 (2020) 195-207.
    [22] U.J. Pfahl, M.C. Ross, J.E. Shepherd, K.O. Pasamehmetoglu, C. Unal, Flammability limits, ignition energy, and flame speeds in H2–CH4–NH3–N2O–O2–N2 mixtures, Combust. Flame 123 (2000) 140-158.
    [23] B. Shu, S.K. Vallabhuni, X. He, G. Issayev, K. Moshammer, A. Farooq, R.X. Fernandes, A shock tube and modeling study on the autoignition properties of ammonia at intermediate temperatures, Proc. Combust. Inst. 37 (2019) 205-211.
    [24] H. Lesmana, M. Zhu, Z. Zhang, J. Gao, J. Wu, D. Zhang, Experimental and kinetic modelling studies of flammability limits of partially dissociated NH3 and air mixtures, Proc. Combust. Inst. 38 (2021) 2023-2030.
    [25] Y. Tang, D. Xie, B. Shi, N. Wang, S. Li, Flammability enhancement of swirling ammonia/air combustion using AC powered gliding arc discharges, Fuel 313 (2022) 122674.
    [26] D.R. Jenkins, Hypersonics Before the Shuttle: A Concise History of the X-15 Research Airplane, NASA Publication (2000).
    [27] O. Kurata, N. Iki, T. Matsunuma, T. Inoue, T. Tsujimura, H. Furutani, H. Kobayashi, A. Hayakawa, Performances and emission characteristics of NH3–air and NH3single bondCH4–air combustion gas-turbine power generations, Proc. Combust. Inst. 36 (2017) 3351-3359.
    [28] H. Lesmana, M. Zhu, Z. Zhang, J. Gao, J. Wu, D. Zhang, An experimental investigation into the effect of spark gap and duration on minimum ignition energy of partially dissociated NH3 in air, Combust. Flame 241 (2022) 112053.
    [29] Y. Ju, W. Sun, Plasma assisted combustion: Dynamics and chemistry, Prog. Energy Combust. Sci. 48 (2015) 21-83.
    [30] A. Fridman, S. Nester, L.A. Kennedy, A. Saveliev, M.Y. Ozlem, Gliding arc gas discharge, Prog. Energy Combust. Sci. 25 (1999) 211-231.
    [31] T. Hammer, T. Kappes, M. Baldauf, Plasma catalytic hybrid processes: gas discharge initiation and plasma activation of catalytic processes, Catal. Today 89 (2004) 5-14.
    [32] X. Tao, M. Bai, X. Li, H. Long, S. Shang, Y. Yin, X. Dai, CH4–CO2 reforming by plasma – challenges and opportunities, Prog. Energy Combust. Sci. 37 (2011) 113-124.
    [33] H. Do, S.K. Im, M.A. Cappelli, M.G. Mungal, Plasma assisted flame ignition of supersonic flows over a flat wall, Combust. Flame 157 (2010) 2298-2305.
    [34] Y.P. Raizer, Gas Discharge Physics, Barcelona: Springer, 1991.
    [35] V.T. Walter, L. Merotto, M. Balmelli, P. Soltic, Experimental study of the ignition of lean methane/air mixtures using inductive and NRPD ignition systems in the pre-chamber and turbulent jet ignition in the main chamber, Energy Conv. Manag. 252 (2022) 115012.
    [36] J.A.T. Gray, D.A. Lacoste, Effect of the plasma location on the deflagration-to-detonation transition of a hydrogen–air flame enhanced by nanosecond repetitively pulsed discharges, Proc. Combust. Inst. 38 (2021) 3463-3472.
    [37] M.T. Nguyen, S.S. Shy, Y.R. Chen, B.L. Lin, S.Y. Huang, C.C. Liu, Conventional spark versus nanosecond repetitively pulsed discharge for a turbulence facilitated ignition phenomenon, Proc. Combust. Inst. 38 (2021) 2801-2808.
    [38] B. Lewis, G. von Elbe, Combustion, Flames and Explosions of Gases, 3rd ed., Academic Press, Orlando, 1987.
    [39] A.P. Kelley, C.K. Law, Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames, Combust. Flame 156 (2009) 1844-1851.
    [40] S.P.M. Bane, Spark ignition: Experimental and numerical investigation with application to aviation safety, California Institute of Technology, Ph.D. thesis, 2010.
    [41] 石泰光,壓力效應對奈秒重覆脈衝放電引燃機率之影響,國立中央大學機械工程研究所,碩士論文,2022。
    [42] X. Chen, Q. Liu, Z. Mou, Y. Shen, J. Huang, H. Ma, Flame front evolution and laminar flame parameter evaluation of buoyancy-affected ammonia/air flames, Int. J. Hydrog. Energy 46 (2021) 38504-38518.
    [43] S.S. Shy, Y.C. Liao, Y.R. Chen, S.Y. Huang, Two ignition transition modes at small and large distances between electrodes of a lean primary reference automobile fuel/air mixture at 373 K with Lewis number >> 1, Combust. Flame 225 (2021) 340-348.

    QR CODE
    :::