| 研究生: |
吳宗翰 Tsunghan Wu |
|---|---|
| 論文名稱: |
計算智慧及複數模糊集於適應性影像處理之研究 A Computational Intelligence Based Approach with Complex Fuzzy Sets to Adaptive Image Noise Processing |
| 指導教授: |
李俊賢
Chunshien Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理學系 Department of Information Management |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 遞迴最小平方估計 、自我組織 、分群 、複數模糊集合 、影像復原 、適應性影像雜訊消除 、複數類神經模糊系統 、粒子群最佳化 |
| 外文關鍵詞: | image restoration, RLSE, adaptive image noise cancelling (AINC), PSO, complex neuro-fuzzy system, self-organization, clustering, complex fuzzy set |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們提出兩種適應性濾波器設計方法,分別為複數類神經模糊系統(Complex Neuro-Fuzzy System, CNFS)濾波器與自我組織複數類神經模糊系統(Self-Organizing Complex Neuro-Fuzzy System, SOCNFS)濾波器,並將它們應用於解決適應性影像雜訊消除(adaptive image noise cancelling, AINC)的問題上。在濾波器設計上,我們主要分為兩個部份進行探討,第一部份為濾波器系統建構,第二部份為系統參數調整。系統建構方面,我們以Takagi-Sugeno (T-S) 模糊If-Then規則作為CNFS與SOCNFS的系統架構,並以複數模糊集合(Complex Fuzzy Set, CFS)做為模糊規則的歸屬函數。系統參數調整方面,我們進一步設計了一種PSO-RLSE複合式學習方法用於調整濾波器內的參數,此方法結合了著名的粒子群最佳化(Particle Swarm Optimization, PSO)方法與遞迴最小平方估計法(Recursive Least-Square Estimation, RLSE)。PSO用來調整濾波器的前鑑部參數,RLSE則用於調整濾波器的後鑑部參數。PSO-RLSE學習方法具有快速的學習能力與高度的執行效率。而我們所提出的CNFS與SOCNFS濾波器對於非線性函數均具有絕佳的映射能力。SOCNFS則是基於CNFS的概念並結合自我組織機制所設計出來的。將用來訓練SOCNFS的訓練數據進行分群,透過分群結果自動決定系統中的規則數以及初始化的系統參數。這種方式不僅可以減少人為介入因素,同時也為系統內模糊規則數的制定提出了有力的數理依據。
在AINC應用中,我們所提出的CNFS濾波器與SOCNFS濾波器會以間接函數逼近(indirect function approximation)的方式進行雜訊通道的動態行為模擬。經由這種方式,受汙染的影像將可被復原成極近似於原始影像的乾淨影像。我們分別以數張影像與四個範例測試CNFS與SOCNFS濾波器的雜訊消除效果,並得到出色的復原影像品質。
In this thesis, we propose two novel adaptive filters, complex neuro-fuzzy system (CNFS) and self-organizing complex neuro-fuzzy system (SOCNFS), and apply them to the problem of adaptive image noise cancelling (AINC). Complex fuzzy sets (CFS) and Takagi-Sugeno (T-S) fuzzy If-Then rules are used to shape the structure of both the CNFS and SOCNFS. A CFS is the fuzzy set whose membership is complex-valued state within the unit disk in complex plane. We devise a hybrid optimization method to adapt the adaptive filters for the AINC problem. The hybrid learning method is called the PSO-RLSE method, including the well-known particle swarm optimization (PSO) method and the famous recursive least square estimation (RLSE) method. They cooperate in hybrid way during the learning process for the adaptive filters. The PSO is used to update the parameters of premise part of the filters while the consequent part is updated by the RLSE. The PSO-RLSE learning method is very efficient for fast learning. The proposed CNFS and SOCNFS filters possess excellent nonlinear mapping ability because CFS can bring in complex memberships in fuzzy inference computing for input-output mapping capability. On the other hand, with the mechanism of self-organization, the SOCNFS can generate fuzzy rules in the form of clusters and learn its parameters by the stimulation of input/output training data to have its initial If–Then rules for application. In the AINC application, the proposed CNFS and SOCNFS can perform indirect function approximation to mimic the dynamic behaviour of unknown noise channel in such a way that a corrupted image may be adaptively restored as clear to its original version as possible. Few examples with several images are used to test the proposed approachs, by which excellent performance for image restoration has been observed.
[1] D. Van De Ville, M. Nachtegael, D. Van der Weken, E. E. Kerre, W. Philips, and I. Lemahieu, “Noise reduction by fuzzy image filtering,” IEEE Transactions on Fuzzy Systems, vol. 11, pp. 429-436, 2003.
[2] G. A. Mastin, “Adaptive filters for digital image noise smoothing-An evaluation,” Computer Vision, and Image Processing, vol. 31, pp. 103-121, 1985.
[3] B. Smolka, R. Lukac, A. Chydzinski, K. N. Plataniotis, and W. Wojciechowski, “Fast adaptive similarity based impulsive noise reduction filter,” Real-Time Imaging, vol. 9, pp. 261-276, 2003.
[4] R. C. Gonzalez and RE Woods. Digital Image Processing, Addison-Wesley Publishing Company, New York, 1993.
[5] C. F. Juang and C. T. Lin, “An online self-constructing neural fuzzy inference network and its applications,” IEEE Transactions on Fuzzy Systems, vol. 6, pp. 12-32, 1998.
[6] S. Paul and S. Kumar, “Subset hood-product fuzzy neural inference system (SuPFuNIS), ” IEEE Transactions on Neural Networks, vol. 13, pp. 578-599, 2002.
[7] V. N. Vapnik, S. Golowich, and A. J. Smola, “Support vector method for function approximation, regression estimation, and signal processing,” Advances in Neural Information Processing Systems, vol. 9, pp. 281-287, 1997.
[8] V. V. Sergeev, V. N. Kopenkov, and A. V. Chernov, “Comparative Analysis of Function Approximation Methods in Image Processing ,” Pattern Recognition and image analysis, vol. 17, pp. 217-221, 2007.
[9] W. A. Farag, V. H. Quintana, and G. Lambert-Torres, "A genetic-based neuro-fuzzy approach for modelling and control of dynamical systems," IEEE Transactions on Neural Networks, vol. 9, pp. 756-767, 1998.
[10] A. Kandel, D. Ramot, R. Milo, and M. Friedman, "Complex Fuzzy Sets," IEEE Transactions on Fuzzy Systems, vol. 10, pp. 171–186, 2002.
[11] S. Dick, "Toward complex fuzzy logic," IEEE Transactions on Fuzzy Systems, vol. 13, pp. 405-414, 2005.
[12] D. Ramot, M. Friedman, G. Langholz, and A. Kandel, "Complex fuzzy logic," IEEE Transactions on Fuzzy Systems, vol. 11, pp. 450-461, 2003.
[13] R. C. Eberhart and J. Kennedy, “A New Optimizer Using Particle Swarm Theory,” Proceeding of the Sixth International Symposium on Micro Machine and Human Science, vol. 43, pp. 39-43, 1995.
[14] P. J. Angeline, “Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences,” Lecture Notes in Computer Science, pp. 601-610, 1998.
[15] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence in a multidimensional complex space,” IEEE transactions on Evolutionary Computation, vol. 6, pp. 58-73, 2002.
[16] X. Hu and R. Eberhart, “Multiobjective optimization using dynamic neighborhood particle swarm optimization,” Proceeding of the Evolutionary Computation, pp. 1677-1681, 2002.
[17] Y. Dong, J. Tang, B. Xu, and D. Wang, “An application of swarm optimization to nonlinear programming,” Computers and Mathematics with Applications, vol. 48, pp. 1655-1668, 2005.
[18] G. C. Goodwin and R. L. Payne, Dynamic system identification: Experiment design and data analysis: Academic Press, 1997.
[19] S. Pena, R. S. Alonso, Anigstein, and B. A. Cone, “Robust optimal solution to the attitude/force control problem,” IEEE Transactions on Aerospace and Electronic Systems, vol. 36, pp. 784-792, 2000.
[20] I. Bilik and J. Tabrikian, “Radar target classification using doppler signatures of human locomotion models,” IEEE Transactions on Aerospace and Electronic Systems, vol. 43, pp. 1510-1522, 2007.
[21] J. J. Hopfield and D. W. Tank, “Computing with neural circuits: A model,” Science, vol. 233, pp. 625-633, 1986.
[22] S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Company, Inc., New York, 1994.
[23] B. Kosko, “Fuzzy systems as universal approximators,” IEEE Transactions. Comput., vol. 43, pp. 1329-1333, 1994.
[24] J. A. Dickerson and B. Kosko, “Fuzzy function approximation with ellipsoidal rules,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 26, pp. 542-560, 1996.
[25] Y. Yang, J. J. Shi, J. E. Harry, J. Proctor, C. P. Garner, and M. G. Kong, "Multilayer plasma patterns in atmospheric pressure glow discharges," IEEE Transactions on Plasma Science, vol. 33, pp. 302-303, 2005.
[26] T. Nakano and T. Suda, “Self-organizing network services with evolutionary adaptation,” IEEE Transactions on Neural Networks, vol. 16, pp. 1269-1278, 2005.
[27] G. Polzlbauer, T. Lidy, and A. Rauber, “Decision manifolds—a supervised learning algorithm based on self-organization,” IEEE Transactions on Neural Networks, vol. 19, pp. 1518-1530, 2008.
[28] A. H. Tan, N. Lu, and D. Xiao, "Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback," IEEE Transactions on Neural Networks, vol. 19, pp. 230-244, 2008.
[29] F. Russo, “Noise removal from image data using recursive neurofuzzy filters,” IEEE Transactions on Instrumentation and Measurement, vol. 49, pp. 307-314, 2000.
[30] Widrow, J. R. Glover, and J.M. McCool, “Adaptive noise cancelling: Principles and application”, Proc. IEEE, vol. 63, pp. 1692-1730, 1975.
[31] Chunshien Li, Kuo-Hsiang. Cheng, “Soft Computing Approach to Adaptive Noise Filtering”, IEEE Proceedings Conference on Cybernetics and Intelligent Systems, Singapore, 2004.
[32] B. Widrow and S. D. Stearns, “Adaptive signal processing,” Prentice Signal Processing Series, pp.474, 1985.
[33] Gonzalez, R. C. “Richard. E. Woods,“Digital Image Processing.” 2nd International Edition Prentice Hall, 2002.
[34] A. C. Zelinski, M. Puschel, S. Misra, and J. C. Hoe “Automatic cost minimization for multiplierless implementations of discrete signal transforms,” IEEE ICASSP, vol. 5, pp. 221-225, 2004.
[35] J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-fuzzy and soft computing, Prentice Hall Upper Saddle River, NJ, 1997.
[36] H. Sun, S. Wang, and Q. Jiang, “FCM-based model selection algorithms for determining the number of clusters,” Pattern recognition, vol. 37, pp. 2027-2037, 2004.
[37] K. J. Astrom and B. Wittenmark, Adaptive control: Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1994.