跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王怡昌
I-Chang Wang
論文名稱: 中小型垂直軸風力發電機之氣動噪音分析
Aeroacoustics Analysis of a Small Vertical-Axis Wind Turbine
指導教授: 黃以玫
Yii-Mei Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 144
中文關鍵詞: 垂直軸風力發電機氣動聲學LMS Virtual.LabANSYS FLUENT
外文關鍵詞: LMS Virtual.Lab, ANSYS FLUENT, Aeroacoustics, Vertical Axis Wind Turbine(VAWT)
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文選擇中、小型垂直軸風機作為研究對象以分析其噪音。垂直軸風力發電機與水平軸風力發電機相比,其功率係數較低,但仍然有其優勢存在,構造簡單且適合風況較差、障礙物較多之環境,產生之噪音較低。
      本研究利用ANSYS FLUENT計算流體力學(CFD),並分別使用ANSYS  FLUENT與LMS Virtual.Lab分析氣動噪音,對10kW風機在不同風速、轉速下進行模擬分析,比較各種情形下之聲場分佈;而對50kW風機則比較有翼尖小翼與無翼尖小翼對氣動噪音之影響。此項研究可提供研究人員一套模擬方法,有助於分析垂直軸風機之氣動噪音,並幫助風機開發與設計。


      Two small vertical axis wind turbines(VAWT), 10kW and 50kW, are analyzed for understanding their noise due to rotation of the blades. The vertical axis wind turbine compared with horizontal axis wind turbine(HAWT) has a lower efficiency. However, the supporting structure of VAWT structure is relatively simple. It is suitable in poor wind conditions. Besides, VAWT also generate lower noise.
      In this study, ANSYS FLUENT is used to calculating fluid dynamic effects. Then, ANSYS FLUENT and LMS Virtual.Lab are chosen to obtain aeroacoustic noise. The aeroacoustic sound pressures due to the operation of the 10kW wind turbine at different wind velocities and rotational speeds are investigated. The noise of a 50kW wind turbine is studied to give the effects due to additional winglets on the blade tips. This thesis can provide information to understand the noise resulted from VAWT.

    摘要                           I Abstract                         II 誌謝                          III 目錄                           IV 圖目錄                         VII 表目錄                         XIII 符號說明                        XIV 第一章 緒論                        1 1-1 前言                       1 1-2 文獻回顧                     1 1-3 內容提要                     3 第二章 基礎理論                      7 2-1 CFD基礎理論方法                 7 2-2 紊流模型                     8 2-3 氣動聲學                    10 2-3-1 萊特希爾聲學類比理論              10 2-3-2 FfowcsWilliams –Hawkings方程式(FW-H方程式)   12 2-3-3 聲壓函數                    14 2-4 風機與噪音基本原理               15 2-4-1 功率係數(power coefficient, C_P)        15 2-4-2 音壓位準(Sound Pressure Level, SPL)       17 第三章 數值模擬方法與模型建立              20 3-1 數值模擬軟體簡介                20 3-1-1 ASNYS Workbench及ANSYS FLUENT          20 3-1-2 LMS Virtual.Lab                 21 3-2 幾何外型                    21 3-3 壁面函數與邊界條件               22 3-4 ANSYS之計算方法                 23 3-4-1 網格                      23 3-4-2 求解方法                    24 3-4-3 收斂條件                    25 3-5 聲學分析                    25 3-5-1 ANSYS FLUENT之計算聲學             25 3-5-2 LMS Virtual.Lab之計算聲學            26 第四章 數值分析結果與討論                37 4-1 ANSYS FLUENT之10kW風機聲學分析(風速12 m/s)   37 4-1-1 風速12m/s,TSR=2                38 4-1-2 風速12m/s,TSR=3                39 4-1-3 風速12m/s,TSR=4                40 4-1-4 TSR=2、3、4綜合討論               40 4-2 LMS Virtual.Lab之10kW風機聲學分析(風速12 m/s)  41 4-3 10kW風機ANSYS FLUENT與LMS Virtual.Lab比較    42 4-4 ANSYS FLUENT之10kW風機聲學分析(風速2 m/s)    43 4-4-1 風速2m/s,TSR=2                 43 4-4-2 風速2m/s,TSR=3                 44 4-4-3 風速2m/s,TSR=4                 44 4-4-4 TSR=2、3、4綜合討論               45 4-5 LMS Virtual.Lab之10kW風機聲學分析(風速2 m/s)  46 4-6 10kW風機ANSYS FLUENT與LMS Virtual.Lab比較    46 4-7 ANSYS FLUENT之50kW風機聲學分析         47 4-7-1 50kW風機無翼尖小翼之聲學分析          48 4-7-2 50kW風機有翼尖小翼之聲學分析          49 4-7-3 比較50kW風機有/無翼尖小翼之聲學分析       50 4-8 LMS Virtual.Lab之50kW風機聲學分析        50 4-9 50kW風機ANSYS FLUENT與LMS Virtual.Lab比較    51 第五章 結論與未來展望                  137 5-1 結論                      137 5-2 未來展望                    139 參考文獻                        141 作者簡介                        144

    白明憲,2000,聲學理論與應用-主動是噪音控制,全華圖書
    郭淑芬,盧奕銘,崔廣義,涂聰賢,劉育翔,2007,不同風速下風力發電機噪音分布之研究,音響學會年會暨第二十屆論文發表會
    張智堯,2011,螺旋式垂直軸風力機之氣動力模擬,中央大學機械工程學系碩士論文
    孫耘,2007,新型垂直軸風力發電系統之設計與實現,淡江大學電機工程學系碩士論文
    ANSYS, 2009, “ANSYS Fluent user’s guide”, ANSYS, Inc..
    Brumioul, N., 2010, Evaluation of Aerodynamic Criteria in the Design of a
    Small Wind Turbine with the Lifting Line Mode, Degree of Master of Science in Aerospace Engineering
    Dowing, A.P., and Williams, J.E., 1983, Sound and sources of sound: The Sound Field of Moving Sources, Horwood, New York, U.S.A
    Dumitrescu, H., Cardos, V., Dumitrache, A., and Frunzulica, F., 2010, ”Low-Frequency Noise Prediction of Vertical Axis Wind Turbines”, Proceedings of the Romanian Academy, Vol. 11, pp. 47-54
    Eriksson, S., Bernhoff, H., and Leijon, M., 2008, “Evaluation of Different Turbine Concepts for Wind Power”, Renewable and Sustainable Energy Reviews, 12(2008), pp.1419-1434
    Ffows Williams, J.E., and Hawkings, D.L., 1969, “Sound Generation by Turbulence and Surfaces in Arbitrary Motion”, Philosophical Transactions of the Royal Society of London, Vol. 264, No. 1151, pp. 321-342
    Filios, A.E., Tachos, N.S., Fragias, A.P., and Margaris, D.P., 2006, “Broadband Noise Radiation Analysis for an HAWT Rotor”, Renewable Energy 32(2007), pp.1497-1510
    Hawkings, D.L., and Lowson, M.V., 1974, “Theory of Open Supersonic Rotor Noise”, Journal of Sound and Vibration, Vol. 36(1), pp. 1-20
    Lighthill, M.J.,1952, “On Sound Generated Aerodynamically. I. General Theory”, Proceedings of the Royal Society of London, Vol. 211, No. 1107, pp. 564-587
    Manwell, J.F., McGowan, J.G., and Rogers, A.L., 2002, Wind Energy Explained: Theory, Design and Application, John Wiley & Sons, U.K.
    Migliore, P., Dam, J.V., and Huskey, A., 2004, “Acoustic Tesrs of Small Wind Turbunes”, 2004 Wind Energy Symposium
    Morris, P.J., Long, L.N., and Brentner, K.S., 2004, “An Aeroacoustic Analysis of Wind Turbines”, 42nd AIAA Aerospace Sciences Meeting and Exhibit
    Rogers, A.L., and Manwell, J.F., 2004, Wind Turbine Noise Isues, Department of Mechanical and Industrial Engineering University of Massachusetts at Amherst
    Sezer-Uzol, N., and Long, L.N., 2006, “3-D Time-Accurate CFD Simulations of Wind Turbine Rotor Flow Fields”, 44th AIAA Aerospace Sciences Meeting and Exhibit
    Salt, A.N., and Hullar, T.E., 2010, “Responses of the Ear to Low Frequency Sounds, Infrasound and Wind Turbines”, Hearing Research 268, pp.12-21
    Son, E., Kim, H., Kim, H., Choi, W., and Lee, S., 2010, “Integrated numerical method for the prediction of wind turbine noise and the long range propagation”, Currunt Applied Physics 10, S316-319

    QR CODE
    :::