| 研究生: |
蕭定群 Ting-chun Shaw |
|---|---|
| 論文名稱: |
副產石灰配合再生粒料製作無水泥混凝土可行性評估 Use of CFB bed ash and recycled aggregates in making non-portland cement concrete |
| 指導教授: |
黃偉慶
Wei-hsing Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | CFB副產石灰 、抗壓強度 、凝結時間 |
| 外文關鍵詞: | CFB ash, compressive strength, setting time |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
副產石灰為循環式流體化床發電鍋爐(Circulating Fluidized Bed Boiler,簡稱CFB)脫硫製程下,所產生之副產物,業經證實為一可行之新興混凝土膠結材料。
本研究係利用副產石灰中之鹼性物質,激發水淬爐石粉,使其進行卜作嵐反應,一方面製作砂漿塊及砂漿棒試體,進行抗壓強度、體積穩定性及耐久性試驗;另一方面,搭配經資源化處理之營建廢棄物廢棄混凝土石與工業廢棄物爐碴砂,分別取代天然粗、細粒料,進行混凝土拌合試驗,最後嘗試加入化學摻料以加速其凝結時間,藉以評估副產石灰配合再生粒料製做無水泥綠色混凝土之可行性。
實驗結果顯示,抗壓強度試驗中,使用膠結材重量20%之副產
石灰與80 %之爐石粉,抗壓強度最佳,且均可符合ASTM C150對水泥墁料之強度要求;乾縮試驗方面,使用適量之副產石灰,可降低大量使用爐石粉所產生之乾縮;而針對高含硫量可能引致之膨脹問題,則應限制副產石灰使用量(≦17%),使試體膨脹量符合規範要求;耐久性試驗結果則顯示副產石灰-爐石膠結系統具有抵抗硫酸鹽侵蝕之能力,維持試體體積穩定。混凝土配合設計試驗結果顯示,在良好之工作性下,使用爐碴砂部分取代天然細粒料抗壓效果良好;使用廢棄混凝土塊取代粗粒料之配比,對混凝土強度則會產生一定程度的影響。凝結時間試驗中,運用鹼活化技術,加入矽酸鈉與氫氧化鈉,可有效改善副產石灰-爐石之漿體時間,但在良好工作性下,使用大量拌合水,使得混凝土凝結時間不如預期。評估各項實驗結果,副產石灰配合再生粒料製作無水泥混凝土係可行的。
Circulating Fluidized Bed boiler (CFB) bed ash is the by-product of the CFB desulfurization process, and has been proved to be a potential material for replacement of portland cement as a cementitious material.
In this study, CFB bed ash was used as an alkali substances to activate the pozzolanic reaction of blast furnace slag such that the activated slag can be used as cementitious materials in making concrete. Mortar specimens made with various proportions of CFB bed ash and slag were tested for their compressive strength, volume stability and durability. Also, recycled concrete aggregate (RCA) and industrial waste slag sand were evaluated to replace natural coarse and fine aggregates, respectively, for the possibility of producing a non-portland cement concrete.
Test results indicate that the combination of 20% CFB ash and 80% slag produces adequate compressive strength satisfying the ASTM C 150 requirements on strength of Portland cement. On the other hand, it is suggested that the amount of CFB used be less than 20%, so as to avoid generating over-expansion due to the high content of SO3 in CFB bed ash. In addition, it was found that the incorporation of CFB ash helps reducing the shrinkage resulting from the high amount of slag as cementing material. And the combination exhibits excellent sulfate-resisting capability also.
Concrete mixes proportioned using 25% electric-arc furnace slag in replacement of fine aggregates showed increases in compressive strength, while the use of 50% RCA in replacement of natural coarse aggregate showed reduced compressive strength.
The shortcoming of using CFB ash in activating slag as cementitious material is that it caused delayed setting time. Various chemical admixtures were tested for improving the setting time of the mixes in question. It was found that, at an appropriate amount, the use of alkali activator would speed up the setting time of slag-CFB bed ash cementing system.
To conclude, the combination of slag-CFB bed ash along with recycled aggregates shows great potential of non-portland cement green concrete.
錢覺時、鄭洪傳、王智、宋遠明、楊娟,「流化床燃煤固硫灰碴活性評定方法」,煤炭學報,第三十一卷,第四期,第506-510頁(2006)。
李剛、趙鳴,「流化床飛灰在混凝土中大摻量替代水泥的研究」,環境科學與技術,第29卷,第10期,第39-40頁、第51頁(2006)。
林凱隆、吳弘任、盧博雅、張家祥、陳子傑、陳柏宇,「副產石灰應用於卜作嵐材料之水化特性研究」,2009資源與環境學術研討會,花蓮。
沈永年、王和源、林仁益、郭文田,「混凝土技術」,全華科技圖書股份有限公司,台北市(2004)。
常正之,「混凝土施工」,科技圖書股份有限公司,台北市(2001)。
黃偉慶、潘奕銘、廖小媛、王昱智、汪翊鐙,「CFB副產石灰摻配爐
石粉製作混凝土成效研究」總結報告(2010)。
王昱智,「副產石灰為混凝土膠結材料之配比與特性研究」,國立中央大學土木工程研究所碩士學位論文(2008)。
汪翊鐙,「副產石灰摻配爐石粉製作混凝土成效研究」,國立中央大學土木工程研究所碩士學位論文(2009)。
詹雅竹,「再生混凝土及高溫後砂漿工程性質之研究」,國立台灣科技大學營建工程研究所碩士學位論文(2006)。
陳豪吉、彭獻生、楊宗岳,「營建廢棄物應用於公路工程之可行性研究」,台灣公路工程,第二十九卷,第九期,第2-15頁 (2003)。
陳立,「電弧爐氧化碴為混凝土骨材之可行性研究」,國立中央大學土木工程研究所博士學位論文(2002)。
黃兆龍,「混凝土性質與行為」,詹氏書局,台北(1999)。
Chugh, Y.P., Patwardhan, A., and Kumar, S. (2007), “Demonstration of CFB ash as a cement substitute in concrete pier foundations for a
Photo-Voltaic power system at SIUC,”2007 World of Coal Ash (WOCA), Covington, Kentucky, U.S.A.
C.S. Poon, S. C. Kou, L. Lam, Z. S. Lin,”Activation of fly ash/cement systems using calcium sulfate anhydrite (CaSO4)” Cement and Concrete Research(31), 873-881, 2001.
Guanghong Sheng, Qin Li, Jianping Zhai, Feihu Li,”
Self-cementitous properites of fly ashes from CFBC boilers
co-firing coal and high-sulphur petroleum coke,” Cement and Concrete Research(37), 871-876, 2007.
K.K. Sagoe-Crentsil, T. Brown, A.H. Taylor, “Performance of concrete made with commercially produced coarse recycled
concrete aggregate,” Cement and Concrete Research(31),
707-712, 2001.
Li, D., Zhong F.,Guo, Q. and Lu, J. (2007), “Properties of flash Hydrated and agglomerated particles of CFB fly ashes,” Fuel, 88, 215-220.
Mehta, P. K. (1986). Concrete structure properties and materials, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A.
N. Mike Jackion, Scott Schultz, Paul Sander, Lindsay Schopp,”Beneficial use of CFB ash in pavement construction applications,” Fuel (88), 1210-1215, 2009.
Rafat SiddIque, Geert DE Schutter, Albert Noumowe, “Effect of used-foundry sand on the mechanical properties of concrete,”
Construction and Building Material(23),976-980, 2009.
Shi, C., and Day, R. L. (1995). “A calorimetric study of early hydration of alkali slag cement.” Cement and Concrete Research, 25 (6), 1333-1346.
Song, S., and Jennings, H. M. (1999). “Pore solution chemistry of alkali-activated ground granulated blast-furnace slag.” Cement and Concrete Research, 29 (2), 159-170.
T. Sievert, A. Wolter , N. B. Singh, “Hydration of anhydrite of gypsum(CaSO4.II) in a ball mill,” Cement and Concrete Research(35), 623-630, 2005.
Young, J. F., Mindess, S. and Darwin, D. (2002), Concrete,
Prentice-Hall, Inc., Upper Saddle River, New Jersey, U.S.A.