跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾暐盛
Wei-Sheng Tseng
論文名稱: 高性能展頻時脈產生器之設計
Design of High Performance Spread Spectrum Clock Generator
指導教授: 鄭國興
Kuo-Hsing Cheng
黃弘一
Hong-Yi Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 97
語文別: 英文
論文頁數: 83
中文關鍵詞: 低電壓展頻時脈產生器多模數除頻器差異三角積分調變器
外文關鍵詞: sigma delta modulator, low voltage, Multi-modular divider, SSCG
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今電子裝置往高頻發展的同時,電磁干擾儼然已成為一不可忽視之問題。展頻時脈產生器被廣泛運用在解決電磁干擾的運用上。此篇論文研究兩種不同規格展頻時脈產生器之運用,一為0.5伏特之展頻時脈產生器,及6-GHz之展頻時脈產生器。此0.5伏特之展頻時脈產生器在超低功耗的規格下,達到1.5-GHz之SATA規格。6-GHz展頻時脈產生器則具有全差動式的構造,對於電源雜訊有較高的抵抗力,同時也達到SATA規格。
    本論文以0.5伏特為目標電壓,提出順向基體偏壓的最佳化技巧-非對稱式順向基體偏壓與通道寬度最佳化,可以在達到更高操作速度的同時,還能減少功率的消耗並縮小晶片面積與成本。而相位切換式多模數除頻器,具有0.5個週期的解析度,能達到高速的操作。精度增強形差異績分調變器,利用低位元之累加器,等效為高位元之累加器,達到更小的量化誤差,並操作在更低頻率而節省功率。測試晶片實現在台積電1P8M 0.13製程,核心面積0.12um¬2,使用0.5伏特之供應電壓操作在1.5-GHz,其功率消耗僅1.4m瓦特。
    差動式6-GHz展頻時脈產生器,符合未來第三代SATA之規格,其全差動式設計,大大減少迴路濾波器之面積與成本,並具有較強抵抗電源共模雜訊之能力。而修正式電流式邏輯除頻器,能夠根據控制電壓改變其可除頻率,獲得大的除頻範圍。測試晶片實現在台積電1P6M 0.18製程,核心面積0.11um¬2,使用1.8伏特之供應電壓操作在6-GHz,其功率消耗為34.9m瓦特。


    As frequency increasing in electrical devices, electromagnetic interference (EMI) becomes a serious problem. Spread spectrum clock generator (SSCG) is widely used to reduce EMI. There are two SSCG proposed in this thesis. One is a 0.5 V SSCG and the other is 6-GHz SSCG. The 0.5 V SSCG achieves serial advanced technology attachment (SATA) 1.5-GHz specification with very low power consumption. The 6-GHz SSCG has fully differential architecture, which immunizes common mode supply noise, and fits SATA specification.
    The proposed asymmetry forward body bias with channel width scaling (AFBWS) is the optimization of forward body bias. This technique not only increases max operation speed, but also reduces power consumption and area. Phase switch multi-modular divider (PSMMD) can operate at high speed with half period of resolution. Accurate enhanced sigma delta modulator (AESDM) is as higher data width and simultaneously operates at lower frequency to save power. The test chip was fabricated in TSMC 0.13 1P8M process which core area is 0.12 um2. The power consumption at 1.5-GHz is only 1.4 mW with 0.5 V supply.
    The 6-GHz SSCG fits the SATA specification. Its fully differential structure not only dramatically reduces LPF area and cost, but also immunizes common mode supply noise. The modified current mode divider can change its dividable range by control voltage. Thus, achieves larger input frequency range. The test chip was fabricated in TSMC 0.18 1P6M process, which core area is 0.11 um2. The power consumption at 6-GHz is 34.9mW with 1.8 V supply.

    摘 要 ii 誌 謝 iv Table of Contents v List of Figures vii List of Table x Chapter 1 Introduction 1 1-1 Motivation and Background 1 1-2 Thesis Organization 2 Chapter 2 Related Technology of SSCG 3 2-1 Electromagnetic Interference 3 2-2 Spread Spectrum Clocking Technology 3 2-3 Forward Body Bias 5 2-4 Multi-Modular Divider 8 2-5 Sigma-Delta Modulator 12 2-6 Jitter Considerations of SSCG 14 Chapter 3 0.5 V Spread Spectrum Clock Generator 16 3-1 Asymmetry Forward Body Bias with Channel Width Scaling 16 3-2 Overview of 0.5 V SSCG 19 3-2-1 Phase Frequency Detector 20 3-2-2 Low Voltage Charge Pump 22 3-2-3 Low Pass Filter 23 3-2-4 Gain Reduced Circuit 26 3-2-5 Voltage Control Oscillator 27 3-2-6 Phase Switching MMD 28 3-2-7 Accurate Enhanced Sigma-Delta Modulator 35 3-2-8 Triangular Wave Generator 43 3-2-9 Digital Coarse Tune 44 3-3 Simulation Results 45 3-4 Layout and Measurement Considerations 51 3-5 Measurement Results 56 Chapter 4 A Fully Differential 6-GHz SATA SSCG 62 4-1 Overview of 6-GHz SATA SSCG 62 4-1-1 Differential Charge Pump with CMFB 63 4-1-2 Differential Low Pass Filter 65 4-1-3 Fully Differential VCO 66 4-1-4 Modified CML Divider 68 4-2 Simulation Results 71 4-3 Layout and Measurement Considerations 74 4-4 Measurement Results 77 Chapter 5 Conclusion and Future Work 80 Reference 81

    [1] W.-T. Chen, J.-C. Hsu, H.-W. Lune, and C.-C. Su, “A Spread Spectrum Clock Generator for SATA-II,” in IEEE Int. Symposium on Circuits and Systems Conf. Tech. Papers, 2005, pp. 2643-2646.
    [2] H.-R. Lee, O. Kim, G. Ahn, and D. K. Jeong, “A Low Jitter 5000 ppm Spread Spectrum Clock Generator for Multi-channel SATA Transceiver in 0.18um CMOS,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, 2005, pp. 160-161.
    [3] H.-H. Chang, I.-H. Hua, and S.-I. Liu, “A Spread-Spectrum Clock Generator with Triangular Modulation,” IEEE J. Solid-State Circuits, vol.30, no. 4, pp. 673-676, Apr. 2003.
    [4] J. Shin, I. Seo, J.Y. Kim, S.-H. Yang, C. Kim, J. Pak, H. Kim, M. Kwak, and G. Hong, “A Low-Jitter Added SSCG with Seamless Phase Selection and Fast AFC for 3rd Generation Serial-ATA,” in IEEE Custom Integrated Circuits Conf. Tech. Papers, 2006, pp. 409-412.
    [5] P.-Y. Wang and S.-P. Chen, “Spread Spectrum Clock Generator,” in IEEE Asian Solid-State Circuits Conf. Tech. Papers, 2007, pp. 304-307.
    [6] M. Kokubo, T. Kawamoto, T. Oshima, T. Noto, M. Suzuki, S. Suzuki, T. Hayasaka, T. Takahashi, and J. Kasai, “Spread-Spectrum Clock Generator for Serial ATA Using Fractional PLL Controlled by Δ∑ Modulator with Level Shifter,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, 2005, pp. 160-590.
    [7] D.-S. Shen and S.-I. Liu, “A Low-Jitter Spread Spectrum Clock Generator Using FDMP,” IEEE Tran. on Circuits And Systems II, vol. 54, no. 11, pp. 979-983, Nov. 2007.
    [8] J. Craninckx and M.S.J. Steyaert, “A 1.75-GHz-3-V Dual-Modulus Divide-by-128-129 Pre-scalar in 0.7-um CMOS,” IEEE J. Solid-State Circuits, vol. 31, no. 7 , pp. 890-897, Jul. 1996.
    [9] C.-H. Park, O. Kim, and B. Kim, “A 1.8-GHz Self-Calibrated Phase-Locked Loop with Precise I/Q Matching , ” IEEE J. Solid-State Circuits, vol. 36, no. 5, pp. 777-783, May. 2001.
    [10] C.-S.Vaucher, I. Ferencic, M. Locher, S. Sedvallson, U. Voegeli, and Z. Wang, ” A Family of Low-Power Truly Modular Programmable Dividers in Standard 0.35-um CMOS Technology, “ IEEE J. Solid-State Circuits, vol. 35, no. 7 , pp. 1039-1045, May. 2000.
    [11] L. W. Couch II, “Digital and Analog Communication Systems,” Macmillan, 1987
    [12] K.-B. Hardin, J.-T. Fessler, and D.R. Bush, ”Spread Spectrum Clock Generation for The Reduction of Radiated Emissions,” in IEEE Int. Symposium on Electromagnetic Compatibility Conf. Tech. Papers, 1994, pp. 227 – 231.
    [13] L. Xiaomei and S. Mourad, ”Performance of Submicron CMOS Devices and Gates with Substrate Biasing,” in IEEE Int. Symposium on Circuits and Systems Conf. Tech. Papers, 2000, pp. 9 – 12.
    [14] S. Narendra, A. Keshavarzi, B.-A. Bloechel, S. Borkar, and V. De, ”Forward Body Bias for Microprocessors in 130-nm,” IEEE J. Solid-State Circuits, vol. 38, no. 5 , pp. 696 - 701, May. 2003.
    [15] H.-H. Hsieh and L.-H. Lu, ”A High-Performance CMOS Voltage-Controlled Oscillator for Ultra-Low-Voltage Operations,” IEEE Tran. on Microwave Theory and Techniques, vol. 55, no. 3 , pp. 467 - 473, Mar. 2007.
    [16] B. Razavi, ”RF Microelectronics,”1ST Ed., Prentice Hall,1998.
    [17] S. Sedra, ”Microelectronic Circuits ,” 5ST Ed., Oxford University Press,2004.
    [18] Y.-C. Yang, S.-A. Yu, T. Wang, and S.-S. Lu, ”A Dual-Mode Truly Modular Programmable Fractional Divider Based on a 1/1.5 Divider Cell, ” IEEE Microwave and Wireless Components Letters, vol. 15, no. 11 , pp. 754 - 756, Nov. 2005.
    [19] C.-H. Heng and B.-S. Song, ”A 1.8-GHz CMOS Fractional-N Frequency Synthesizer With Randomized Multiphase VCO, ” IEEE J. Solid-State Circuits, vol. 38, no. 6 , pp. 848-854, Jun. 2003.
    [20] S.-I. Liu and C.-Y. Yang , “A Phase Locking Loop,” Tsang Hai,2006
    [21] Y.-H. Chuang, S.-L. Jang, J.-F. Lee, and S.-H. Lee, “A Low Voltage 900-MHz Voltage Controlled Ring Oscillator With Wide Liming,” in IEEE Asia-Pacific Conf. on Circuits and Systems Tech. Papers, 2004, pp. 301 – 304.
    [22] N. Krishnapura and P.-R. Kinget, “A 5.3-GHz Programmable Divider for HiPerLAN in 0.25-um CMOS,” IEEE J. Solid-State Circuits, vol. 35, no. 7 , pp. 1019-1024, Jul. 2000.
    [23] X.-P. Yu, M.-A. Do, J.-G. Ma, K.-S. Yeo, R. Wu, and G.-Q. Yan, “ Low Power High-Speed CMOS Dual-Modulus Prescaler Design with Imbalanced Phase-Switching Technique,” IEE Proceedings Circuits Devices and Systems, vol. 152, no. 2 , pp. 127-132, Apr. 2005.
    [24] A.-M. Fahim, “A Compact, Low-Power Low- Jitter Digital PLL,” in IEEE European Solid-State Circuits Conf. Tech. Papers, 2003, pp. 101 - 104.
    [25] T. Kawamoto and M. Kokubo, “A low-jitter 1.5-GHz and Large-EMI Reduction 10-dBm Spread-Spectrum Clock Generator for Serial-ATA,” in IEEE Asia and South Pacific Design Automation Conf. Tech. Papers, 2009, pp. 696 - 701.
    [26] B. Razavi, “Design of Analog CMOS Integrated Circuits,”1ST ED., McGraw-Hill , 2001.
    [27] I.-A. Young, J.-K. Greason, J.-E. Smith, and K.-L.Wong, “A PLL Clock Generator with 5 to 110-MHz of Lock Range for Microprocessors,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, 1992, pp. 50-51.
    [28] R. Mohanavelu and P. Heydari, “A Novel 40-GHz Flip-Flop-Based Frequency Divider in 0.18-um CMOS,” in IEEE European Solid-State Circuits Conf. Tech. Papers, 2005, pp. 185-188.
    [29] B. Razavi, “A Study of Injection Locking and Pulling in Oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9 , pp. 1415-1424, Jun. 2004.

    QR CODE
    :::