跳到主要內容

簡易檢索 / 詳目顯示

研究生: 顏君倢
Chun-Chieh Yen
論文名稱: 電漿增強化學氣相沉積法生長石墨烯的成核與成長動力學
Nucleation and growth dynamics of graphene grown through plasma enhanced chemical vapor deposition (PECVD)
指導教授: 溫偉源
Wei-Yen Woon
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 89
中文關鍵詞: 石墨烯化學氣相沉積法二維材料成長動力學電漿
外文關鍵詞: graphene, chemical vapor deposition, 2D material, growth dynamics, plasma
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 作為具發展性的生長石墨烯方法之一,化學氣相沉積(CVD)以低成本、晶圓尺度的石墨烯為特色,但生長石墨烯所需的溫度約為1050℃,這讓其有耗能的問題。藉由電漿增強化學氣相沉積法(PECVD)的發展,耗能問題得到緩解,電漿中離子與電子所帶的高能量取代了熱能,成長溫度得以降低至約500-900℃。然而CVD生長的石墨烯受限於多晶向晶粒,其包含許多晶粒邊界而降低石墨烯的品質。因此,對於大晶粒面積的石墨烯的追求是個重要的議題,為了這個目的,對成長石墨烯的動力學的瞭解是需要的,且有助於對石墨烯品質的控制。
    在本實驗中,我們示範藉由直接電容耦合射頻電漿增強化學氣相沉積法,快速、低瓦數的生長完全覆蓋的石墨烯在銅箔上。此外,我們揭示在不同氫氣甲烷比例下的成和與成長動力學。藉由調整氫氣流量,石墨烯的生長動力學將被氫氣的催化與蝕刻效應的競爭所決定。透過imagej分析掃描電子顯微鏡圖形,生長動力學將被量化分析並由Johnson-Mehl-Avrami-Kolmogorov (JMAK)模型做解釋。在低氫氣流量下,早期的成核與高成核率提供了較高的生長率;在高氫氣流量下,前驅物在基板表面的擴散與外延成長主宰了大面積晶粒的生長。


    As the one of the promising method for graphene growth, chemical vapor deposition (CVD) features the low cost, wafer-scaled graphene layer production. However, the temperature for graphene growth is about 1050℃ which has the problem of energy consumption. The development of plasma enhanced chemical vapor deposition (PECVD) eases the problem. High energy ions and electrons in plasma replace the thermal energy and reduce the needed temperature to about 500-900℃. While, the CVD graphene is limited by its polycrystalline grain which contains many grain boundary and reduce the quality of graphene. Therefore, the pursuit for the large grain size graphene is the important issue. For this purpose, the understanding of growth dynamics of graphene is needed for the controlling of the quality of graphene.
    In our works, we demonstrate the quick, low power growth process of fully-covered graphene on copper foil by direct capacitive-coupled plasma ratio frequency plasma enhanced chemical vapor deposition (CCP-RF-PECVD) system under low pressure. In addition, the study of nucleation and growth dynamics with different ratio of hydrogen and methane is revealed. By tuning the flow rate of hydrogen, the growth dynamics of graphene is determined by the competition of activation and etching effect of hydrogen. After the characteristic of graphene by SEM and image analysis by Imagej, the growth dynamics is quantified and explained by Johnson-Mehl-Avrami-Kolmogorov (JMAK) model. In low H2 flow rate, nucleation in early stage and high nucleation rate supplies the high growth rate. While in high H2 flow rate, the diffusion of precursor on the substrate surface and epitaxial growth dominated and produced the bigger grain. Furthermore, the simulation of modified JMAK model which considered etching effect of H plasma fits well for experiment data. The dispersive kinetics of growth dynamics has been revealed and further understood.

    1. Introduction - 1 - 2. Background - 3 - 2.1 Introduction to Graphene - 3 - 2.2 Graphene fabrication method - 6 - 2.2.1 Mechanical exfoliation - 6 - 2.2.2 Thermal decomposition of SiC - 7 - 2.2.3 Chemical exfoliation - 8 - 2.3 Chemical vapor deposition graphene - 10 - 2.3.1 Introduction - 10 - 2.3.2 CVD typical setup - 11 - 2.3.3 CVD process on copper - 12 - 2.3.4 Dehydrogenation of CH4 process on copper catalyst - 13 - 2.3.5 Tunnel of carbon radical - 15 - 2.3.6 Role of hydrogen - 15 - 2.4 Plasma enhanced chemical vapor deposition - 21 - 2.4.1 The dehydrogenation of CH4 through PECVD - 22 - 2.4.2 PECVD graphene on copper - 22 - 2.5 Characterization method for graphene - 23 - 2.5.1 Optical microscope (OM) - 23 - 2.5.2 Scanning electron microscope (SEM) - 24 - 2.5.3 Atomic force microscope (AFM) - 25 - 2.5.4 Raman spectroscopy - 27 - 2.5.5 X-ray photoelectron spectroscopy (XPS) - 31 - 2.5.6 Fourier-transform infrared spectroscopy (FTIR) - 33 - 2.5.7 JMAK model (Avrami equation) - 35 - 3. Experiment setup and method - 38 - 3.1 Apparatus - 38 - 3.1.1 Capacitively coupled plasma (CCP) - 39 - 3.1.2 Ion bombardment and magnetron plasma - 40 - 3.2 PECVD graphene growth - 41 - 3.3 Sample preparation - 42 - 3.3.1 Annealing - 42 - 3.3.2 Polishing - 42 - 3.3.3 Coating - 42 - 3.3.4 Bubble transfer - 43 - 3.4 Image analysis - 43 - 3.4.1 Determination of grain:Imagej “watershed” function - 43 - 4. Result and discussion - 45 - 4.1 Magnetron PECVD graphene growth - 46 - 4.1.1 Plasma enhanced dehydrogenation - 46 - 4.1.2 PECVD graphene - 48 - 4.2 Growth dynamics - 55 - 4.2.1 Arrhenius plot - 55 - 4.2.2 Nucleation and growth dynamics - 59 - 4.2.3 Simulation of modified JMAK model - 68 - 5. Conclusion - 72 - 6. Bibliography - 74 -

    [1] K. S. Novoselov and A. H. C. Neto, Two-dimensional crystals-based heterostructures: materials with tailored properties , Phys. Scr. 2012, 014006 (2012)
    [2] Wataru Norimatsu and Michiko Kusunoki, “Epitaxial graphene on SiC{0001}: advances and perspectives”, Phys Chem. Chem. Phys., 2014, 16, 3501—3511
    [3] Kian Ping Loh, et al, The chemistry of graphene, Kian, J. Mater. Chem., 2010,20, 2277-2289
    [4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 306, 666 (2004)
    [5] Pinshane Y. Huang, Carlos S. Ruiz-Vargas , et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts, 20 JANUARY 2011 VOL469 NATURE 389-393
    [6] Jauregui, Luis A., et al. "Electronic properties of grains and grain boundaries in graphene grown by chemical vapor deposition." Solid State Communications 151.16 (2011): 1100-1104.
    [7] Wonbong Choi , Indranil Lahiri , Raghunandan Seelaboyina & Yong Soo Kang (2010) Synthesis of Graphene and Its Applications: A Review, Critical Reviews in Solid State and Materials Sciences, 35:1, 52-71
    [8] Neto, AH Castro, et al. "The electronic properties of graphene." Reviews of modern physics 81.1 (2009): 109.
    [9] R. Zan, Q.M. Ramasse, R. Jadil, U. Bangert, in CH3 Synthesis and Biomedical Applications of Graphene: Present and Future Trends, ed. by M. Aliofkhazraei. Advances in Graphene Science (2013)
    [10] H. O. Pierson, Handbook of Chemical Vapor Deposition, Noyes Publications, Park Ridge (1992)S
    [11] Mattevi, Cecilia, Hokwon Kim, and Manish Chhowalla. "A review of chemical vapour deposition of graphene on copper." Journal of Materials Chemistry 21.10 (2011): 3324-3334.
    [12] X. Chen, et al., Large area CVD growth of graphene, Synthetic Met. (2015)
    [13] Zhang, Wenhua, et al. "First-principles thermodynamics of graphene growth on Cu surfaces." The Journal of Physical Chemistry C 115.36 (2011): 17782-17787.
    [14] Zhang, Xiuyun, et al. "Role of hydrogen in graphene chemical vapor deposition growth on a copper surface." Journal of the American Chemical Society 136.8 (2014): 3040-3047.
    [15] Ivan Vlassiouk et al., Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single- Crystal Graphene, ACS Nano. 2011;5(7):6069-76.
    [16] Losurdo, Maria, et al. "Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure." Physical Chemistry Chemical Physics 13.46 (2011): 20836-20843
    [17] Pai Li et al., Dominant Kinetic Pathways of Graphene Growth in Chemical Vapor Deposition: The Role of Hydrogen, J. Phys. Chem. C 2017, 121, 25949−25955
    [18] Chan, Chia-Chun, Wen-Liang Chung, and Wei-Yen Woon. "Nucleation and growth kinetics of multi-layered graphene on copper substrate." Carbon 135 (2018): 118-124.
    [19] N.Yang, K.Choi, J.Robertson, H.G.Park, Layer-selective synthesis of bilayer graphene via chemical vapor deposition, 2D Mater. 4 (2017) 35023
    [20] M. Konuma, Film Deposition by Plasma Techniques, Springer-Verlag, New York (1992)
    [21] Tomo-o Terasawa, Koichiro Saiki, Growth of graphene on Cu by plasma enhanced chemical vapor deposition, CARBON 50 (201 2) 869 –874
    [22] https://www.researchgate.net/figure/schematic-diagram-of-scanning-electron-microscope-SEM_fig14_281097535
    [23] http://www2.nsysu.edu.tw/physdemo/2012/B2/B2.php
    [24] https://commons.wikimedia.org/wiki/File:AFMsetup.jpg
    [25] https://commons.wikimedia.org/w/index.php?curid=7845122
    [26] L. M.Malard, M. A.Pimenta, G.Dresselhaus, andM. S.Dresselhaus, Phys. Rep. 473, 51 (2009).
    [27] Beams, Ryan, Luiz Gustavo Cançado, and Lukas Novotny. "Raman characterization of defects and dopants in graphene." Journal of Physics: Condensed Matter 27.8 (2015): 083002.
    [28] https://en.wikipedia.org/wiki/X-ray photoelectron spectroscopy # Electron detectors
    [29] https://en.wikipedia.org/wiki/Fourier transform infrared spectroscopy #/ media / File : FTIR_Interferometer.png
    [30] https://www.cfht.hawaii.edu/Instruments/Sitelle/SITELLE_ifts.php
    [31] https://en.wikipedia.org/wiki/Avrami_equation
    [32] HoKwon Kim et al, Activation Energy Paths for Graphene Nucleation and Growth on Cu, Acs Nano. 2012;6(4):3614-23
    [33] Min-Chiang Chuang, Wei-Yen Woon (2016) Nucleation and growth dynamics of graphene on oxygen exposed copper substrate. Carbon 1(2016) 384-390
    [34] Libo Gao et.al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nature Communications volume 3, Article number: 699 (2012)
    [35] ImageI User Guide, https://imagej.nih.gov/ij/docs/guide/146-29 . html # sub : Watershed
    [36] Linzhi Han, et al ,Two-step method preparation of graphene without hydrogen on methanol pretreatment copper substrate by PECVD at low temperature, PhysicaE84 (2016)249–257
    .[37] Ţucureanu, Vasilica, Alina Matei, and Andrei Marius Avram. "FTIR spectroscopy for carbon family study." Critical Reviews in Analytical Chemistry 46.6 (2016): 502-520.
    [38] Siokou, A., et al. "Surface refinement and electronic properties of graphene layers grown on copper substrate: an XPS, UPS and EELS study." Applied Surface Science 257.23 (2011): 9785-9790.
    [39] Ermolieff, A., et al. "XPS, Raman spectroscopy, X‐ray diffraction, specular X‐ray reflectivity, transmission electron microscopy and elastic recoil detection analysis of emissive carbon film characterization." Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films 31.3 (2001): 185-190.
    [40] S.Samukawa, K.Sakamoto, K.Ichiki, High-efficiency neutral-beam generation by combination of inductively coupled plasma and parallel plate DC bias, Japanese J. Appl. Physics, Part 2 Lett. 40 (2001) 3–7.
    [41] S.Samukawa, K.Sakamoto, K.Ichiki, Generating high-efficiency neutral beams by using negative ions in an inductively coupled plasma source, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 20 (2002) 1566–1573
    [42] K.Celebi, M.T.Cole, J.W.Choi, F.Wyczisk, P.Legagneux, N.Rupesinghe, et al., Evolutionary kinetics of graphene formation on copper, Nano Lett. 13 (2013) 967–974.
    [43] Harpale, Abhilash, Marco Panesi, and Huck Beng Chew. "Plasma-graphene interaction and its effects on nanoscale patterning." Physical Review B 93.3 (2016): 035416.

    QR CODE
    :::