跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王智霖
Chih-Lin Wang
論文名稱: Spherical Agglomerates of Poly(ethylene glycol)/Silica Fume Composites as Phase Change Materials
指導教授: 李度
Tu Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 113
中文關鍵詞: 相轉移材料混掺聚乙二醇燻矽結晶溫度延長
外文關鍵詞: phase change material, blending, polyethylene glycol, silica fume, transition zone broadening
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究的主要目的是找到固-液態轉換上型態穩定的相轉移材料,聚乙二醇/燻矽複合物,以及透過混摻不同比例的聚乙二醇/燻矽複合物來調製出擁有寬廣使用溫度範圍的相轉移材料,使得此材料在相轉移材料方面有更多不同的應用。接著,經由球晶製程的方式將原本做出來不規則狀的聚乙二醇/燻矽複合物製作成球形來改善此材料的流動性。聚乙二醇/燻矽複合物是透過含浸法來製備,以不同重量比例的聚乙二醇負載於燻矽載體上。其中附載較高的複合物PEG75/SF擁有重量百分比為47.9%的聚乙二醇,其熔點範圍約在攝氏55-58度,結晶點約在攝氏18-24度。我們將負載較高的複合物PEG75/SF及負載相對較低的複合物PEG25/SF或是無負載的燻矽混摻在一起,發現比例為重量比1:1時有較為寬廣的使用溫度範圍。
    在球晶製程方面,透過兩種不同的攪拌速度(400轉與600轉)所做出來的球晶複合物在粒徑分布上有明顯的不同,在轉速為400轉條件下所做成的球晶複合物裡,有高於百分之四十的球晶複合物仍然小於250微米,我們視其為沒有做成球晶。然而在轉速為600轉時所做出的球晶複合物其粒徑分布較均勻且沒有做成球晶的百分比降低不少。不同攪拌速度對於顆粒的斷裂力在粒徑範圍為355-500微米及710-1000微米時沒有顯著的影響,但在粒徑範圍為500-710微米時則稍有差異。在400轉的條件下所做出的球晶複合物,顆粒的斷裂力在粒徑範圍355-500微米及710-1000微米時分別為0.18±0.06及0.52±0.02牛頓,而在600轉的條件下所做出的球晶複合物,則分別為0.16±0.03及0.53±0.04牛頓。不管是經過轉速為400轉或是600轉的球晶製程後所得到的球晶複合物,在不同的粒徑區間其特性皆沒有太大的差異,都有良好的流動性而在熱性質上也有不錯的均質性。


    The aim of this thesis was to prepare a solid-liquid shape-stabilized phase change materials, polyethylene glycol/silica fume (PEG/SF) composite, and study the blends of different PCM composites to broaden application temperature to suit for more applications of PCM, then through spherical crystallization to conglomerate the PCM composites become spherical agglomerates to improve the flowability. PEG 4000 was embedded in a low-cost SF to form the PEG75/SF composite with a PEG wt% of 47.9 wt%. The melting point and crystallization temperature of the PEG75/SF composite or spherical agglomerates were around 55-58゚C and 18-24゚C as determined by the temperature cycle of DSC with a heating rate of 10゚C/min and a cooling rate of 10゚C/min, respectively. Blends of PEG75/SF composites with PEG25/SF composites or with low-cost SF having a ratio of 1:1 could be used as a phase change material that had a broad crystallization temperature range. The spherical agglomerates of SF and PEG75/SF were made by the spherical crystallization process. Two agitation speeds in the spherical crystallization process about 400 and 600 rpm were studied. It was found that the particle size distribution of agglomerates prepared from different agitation speeds could vary significantly. There were more than 40 wt% of fine particles (< 250 μm) PEG75/SF composites did not conglomerate to become spherical agglomerates at 400 rpm. The particle size distribution was more uniform at 600 rpm. However, the morphology of agglomerates produced at 400 rpm was more spherical than those made at 600 rpm. The effect of the agitation speed on the particle fracture force of agglomerates in the range of 355-500 μm and 710-1000 μm was not obvious. The particle fracture force of agglomerates of 355-500 μm, and 710-1000 μm were 0.18±0.06, and 0.52±0.02 N by 400 rpm and 0.16±0.03, and 0.53±0.04 N by 600 rpm, respectively. There were similar properties between different size cuts of spherical agglomerates of PEG75/SF. Spherical agglomerates of PEG75/SF produced at 400 rpm and 600 rpm had good homogeneity in thermal properties and low Carr’s index indicating good flowability.

    Table of Contents 摘要 i Abstract iii Acknowledgement v List of Figures ix List of Tables xiv Chapter 1 Introduction 1 1.1 Phase Change Materials 1 1.2 Spherical Crystallization Techniques 9 1.2.1 Spherical Agglomeration Method (SA) 11 1.2.2 Quasi-Emulsion Solvent Diffusion Method (QESD) 13 1.2.3 Ammonia Diffusion System (ADS) 14 1.2.4 Neutralization Method (NT) 15 1.2.5 Crystal-Co-Agglomeration Technique (CCA) 15 1.3 Conceptual Framework 16 1.4 References 17 Chapter 2 Experiments 27 2.1 Materials 27 2.2 Experimental Methods 28 2.2.1 Preparation of Uniform Pore Size Silica Fume Supporting Materials 28 2.2.2 Preparation of PEG/SF Composite 29 2.2.3 Spherical Agglomeration 30 2.3 Analytical Measurements 35 2.3.1 Sieving 35 2.3.2 Crushing Test 37 2.3.3 Carr’s Index Test 39 2.4 Instrumentation 40 2.4.1 Thermogravimetric Analysis (TGA) 40 2.4.2 Low Vacuum Scanning Electron Microscopy (LVSEM) 40 2.4.3 Micromeritics ASAP 2010 41 2.4.4 Fourier Transform Infrared (FT-IR) Spectroscopy 42 2.4.5 Optical Microscopy (OM) 42 2.4.6 Powder X-ray Diffraction (PXRD) 42 2.4.7 Low Temperature Differential Scanning Calorimetry (LT-DSC) 43 2.5 References 44 Chapter 3 Results and Discussion 46 3.1 Polyethylene Glycol/Silica Fume Composites 46 3.1.1 Thermal Stability of PEG/SF Composites 46 3.1.2 Pore Structures of the Porous SF and PEG/SF Composites 48 3.1.3 Characterization of PEG, SF and PEG/SF Composites 52 3.1.4 Thermophysical Properties of PEG/SF Composites 57 3.1.5 Phase Change Properties of Blends of PEG/SF Composites 64 3.1.6 Phase Change Properties of Blends of PEG/SF Composites with SF 68 3.2 Spherical Agglomerates of Polyethylene Glycol/Silica Fume composites 71 3.2.1 Effect of Agitation Speed 71 3.2.2 Particle Morphology and Physical Properties 73 3.2.3 Characterizations of Agglomerates 77 3.3 Conclusions 87 3.4 References 88 Chapter 4 Future Works 91 4.1 References 92

    Chapter 1
    1 Armaroli, A.; Balzani, V. The future of energy supply: challenges and opportunities. Angew. Chem. Int. Ed. 2007, 46 (1-2), 52-66.
    2 MacKenzie, J. J. Oil as a finite resource. Nonrenewable Resources 1998, 7 (2), 97-100.
    3 Krewitt, W.; Simon, S.; Graus, W.; Teske, S.; Zervos, A.; Schäfer, O. The 2 °C scenario-A sustainable world energy perspective. Energy Policy 2007, 35 (10), 4969-4980.
    4 Anisur, M. R.; Mahfuz, M. H.; Kibria, M. A.; Saidur, R.; Metselaar, I. H. S. C.; Mahlia, T. M. I. Curbing global warming with phase change materials for energy storage. Renew. Sust. Energ. Rev. 2013, 18, 23-30.
    5 Zalba, B.; Marína, J. M.; Cabeza, L. F.; Mehling, H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23 (3), 251-283.
    6 Sharma, A.; Tyagi, V. V.; Chen, C. R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sust. Energ. Rev. 2009, 13 (2), 318-345.
    7 Yang, C. J.; Jackson, R. B. Opportunities and barriers to pumped-hydro energy storage in the United States. Renew. Sust. Energ. Rev. 2011, 15 (1), 839-844.
    8 Madlener, R.; Latz, J. Economics of centralized and decentralized compressed air energy storage for enhanced grid integration of wind power. Appl. Energ. 2013, 101, 299-309.
    9 Wolsky, A. M. The status and prospects for flywheels and SMES that incorporate HTS. Physica. C, Superconductivity 2002, 372, 1495-1499.
    10 Farid, M. M.; Khudhair, A. M.; Razack, S. A. K.; Al-Hallaj, S. A review on phase change energy storage: materials and applications. Energ. Convers. Mange. 2004, 45 (9-10), 1597-1615.
    11 Mehling, H.; Cabeza, L. F. Phase change materials and their basic properties. Thermal energy storage for sustainable energy consumption 2007, 234, 257-277.
    12 Meng, Q.; Hu, J. A poly(ethylene glycol)-based smart phase change material. Sol. Energy Mater. Sol. Cells 2008, 92 (10), 1260-1268.
    13 Akeiber, H.; Nejat, P.; Majid, M. Z. A.; Wahid, M. A.; Jomehzadeh, F.; Famileh, I. Z.; Calautit, J. K.; Hughes, B. R.; Zaki, S. A. A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renew. Sust. Energ. Rev. 2016, 60, 1470-1497.
    14 Zhang, D.; Li, Z.; Zhou, J.; Wu, K. Development of thermal energy storage concrete. Cem.Concr. Res.2004, 34 (6), 927-934.
    15 Cabeza, L. F.; Castellón, C.; Nogués, M.; Medrano, M.; Leppers, R.; Zubillaga, O. Use of microencapsulated PCM in concrete walls for energy savings. Energy and Buildings 2007, 39 (2),113-119.
    16 Lin, K.; Zhang, Y.; Xu, X.; Di, H.; Yang, R.; Qin, P. Experimental study of under-floor electric heating system with shape-stabilization PCM plates. Energy and Buildings 2005, 37 (3), 215-220.
    17 Wang, Z.; Qiu, F.; Yang, W.; Zhou, X. Application of solar water heating system with phase change material. Renew. Sust. Energ. Rev. 2015, 52, 645-652.
    18 Gin, B.; Farid, M. M. The use of PCM panels to improve storage condition of frozen food. J. Food Eng. 2010, 100 (2), 372-376.
    19 Martin, V.; He, B.; Setterwall, F. Direct contact PCM-water cold storage. Appl. Energ. 2010, 87 (8), 2652-2659.
    20 Pasupathy, A.; Velraj, R. Effect of double layer phase change material in building roof for year round thermal management. Energy and Buildings 2008, 40 (3), 193-203.
    21 Bal, L. M.; Satya, S.; Naik, S. N. Solar dryer with thermal energy storage systems for drying agricultural food products: A review. Renew. Sust. Energ. Rev. 2010, 14 (8), 2298-2314.
    22 Kenisarin, M.; Mahkamov, K. Solar energy storage using phase change materials. Renew. Sust. Energ. Rev. 2007, 11 (9), 1913-1965.
    23 Telkes, M.; Raymond, E. Storing solar heat in chemicals - a report on the Dover house. Ind. Heat. Engr. 1949, 46 (11), 80-86.
    24 Rathod, M. K.; Banerjee, J. Thermal stability of phase change materials used in latent heat energy storage systems: A review. Renew. Sust. Energ. Rev. 2013, 18, 246-258.
    25 Wang, C.; Feng, L.; Yang, H.; Xin, G.; Li, W.; Zheng, J.; Tian, W.; Li, X. Graphene oxide stabilized polyethylene glycol for heat storage. Phys. Chem. Phys. 2012, 14 (38), 13233-13238.
    26 Lv, Y.; Zhou, W.; Jin, W. Experimental and numerical study on thermal energy storage of polyethylene glycol/expanded graphite composite phase change material. Energy and Buildings 2016, 111, 242-252.
    27 Pielichowski, K.; Flejtuch, K. Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polym. Adv. Technol. 2002, 13 (10-12), 690-696.
    28 Karaman, S.; Karaipekli, A.; Sar, A.; Bicer, A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cell 2011, 95 (7), 1647-1653.
    29 Pielichowski, K.; Flejtuch, K. Differential scanning calorimetry study of blends of poly(ethylene glycol) with selected fatty acids. Macromol. Mater. Eng. 2003, 288 (3), 259-264.
    30 Guo, Q.; Wang, T. Influence of SiO2 pore structure on phase change enthalpy of shape-stabilized polyethylene glycol/silica composites. J. Mater. Sci. 2013, 48 (10), 3716-3721.
    31 Liao, C. S.; Ye, W. B. Structure and conductive properties of poly(ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes. Electrochim. Acta 2004, 49 (27), 4993-4998.
    32 Abhat, A. Low temperature latent heat thermal energy storage: heat storage materials. Sol. Energy 1983, 30 (4), 313-332.
    33 Lane, G. A. Low temperature heat storage with phase change materials. Int. J. Ambient Eng. 1980, 1 (3), 155-168.
    34 Alkan, C.; Sari, A. Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage. Solar Energy 2008, 82 (2), 118-124.
    35 Sari, A.; Kaygusuz, K. Thermal performance of palmitic acid as a phase change energy storage material. Energy Convers. Mgmt. 2002, 43 (6), 863-876.
    36 Lee, T.; Chiu, Y. H.; Lee, Y.; Lee, H. L. Thermal properties and structural characterizations of new type of phase change material: anhydrous and hydrated palmitic acid/ camphene solid dispersions. Thermochim. Acta 2014, 575 (10), 81-89.
    37 Nagano, K.; Mochida, T.; Takeda, S.; Domański, R.; Rebow, M. Thermal characteristics of manganese (II) nitrate hexahydrate as a phase change material for cooling systems. Appl. Therm. Eng. 2003, 23 (2), 229-241.
    38 Sharma, S. D.; Kitano, H.; Sagara, K. Phase change materials for low temperature solar thermal applications. Res. Rep. Fac. Eng. Mie Univ. 2004, 29 (1), 31-64.
    39 Dimaano, M.; Escoto, A. Preliminary assessment of a mixture of capric acid and lauric acids for low-temperature thermal energy storage. Energy 1998, 23 (5), 421-427.
    40 Sari, A.; Sari, H.; Onal, A. Thermal properties and thermal reliability of eutectic mixtures of some fatty acids as latent heat storage materials. Energy Convers. Manag. 2004, 45 (3), 364-376.
    41 Jeon, J.; Lee, J. H.; Seo, J.; Jeong, S. G.; Kim, S. Application of PCM thermal energy storage system to reduce building energy consumption. J. Therm. Anal. Calorim. 2013, 111 (1), 279-288.
    42 Kuznik, F.; David, D.; Johannes, K.; Roux, J. A review on phase change materials integrated in building walls. Renew. Sust. Energ. Rev. 2011, 15 (1), 379-391.
    43 Pielichowski, K.; Fleituch, K. Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polym. Adv. Technol. 2002, 13 (10-12), 690-696.
    44 Feng, L.; Zheng, J.; Tang, H.; Guo, Y.; Li, W.; Li, X. Preparation and characterization of polyethylene glycol/active cabon composites as shape-stabilized phase change materials. Sol. Energy Mater. Sol. Cells 2011, 95 (2), 644-650.
    45 Wang, W. L.; Yang, X. X.; Fang, Y. T.; Ding, J.; Yan, J. Y. Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage. Appl. Energ. 2009, 86 (9), 1479-1783.
    46 Wang, W. L.; Yang, X. X.; Fang, T. T.; Ding, J.; Yan, J. Y. Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-aluminum nitride. Appl. Energ. 2009, 86 (7-8), 1196-1200.
    47 Şentürk, S. B.; Kahraman, D.; Alkan, C.; Göçeİ. Biodegradable PEG/cellulose, PEG/agarose and PEG/chitosan blends as shape stabilized phase change materials for latent heat energy storage. Carbohydr. Polym. 2011, 84 (1), 141-144.
    48 Li, J.; He, L.; Liu, T.; Cao, X.; Zhu, H. Preparation and characterization of PEG/SiO2 composites as shape-stabilized phase change materials for thermal energy storage. Sol. Energy Mater. Sol. Cells 2013, 118, 48-53.
    49 Wang, C.; Feng, L.; Li, W.; Zheng, J.; Tian, W.; Li, X. Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: The influence of the pore structure of the carbon materials. Sol. Energy Mater. Sol. Cells 2012, 105, 21-26.
    50 Li, W. D.; Ding, E. Y. Preparation and characterization of cross-linking PEG/MDI/PE copolymer as solid-solid phase change heat storage material. Sol. Energy Mater. Sol. Cells 2007, 91 (9), 48-53.
    51 Zhu, W.; Zhou, Y.; Ma, W.; Li, M.; Yu, J.; Xie, K. Using silica fume as silica source for synthesizing spherical ordered mesoporous silica. Mater. Lett. 2013, 92, 129-131.
    52 Srivastava, V.; Agarwal, V. C.; Kumar, R.; Mehta, P. K. Silica fume – an admixture for high quality concrete. J. Environ. Nanotechnol. 2013, 2, 53-58.
    53 Chow, A. H. L.; Leung, M. W. M. A study of the mechanisms of wet spherical agglomeration of pharmaceutical powders. Drug Dev. Ind. Pharm. 1996, 22 (4), 357-371.
    54 Farnand, J. R.; Smith, H. M.; Puddington, I. E. Spherical agglomeration of solids in liquid suspension. Can. J. Chem. Eng. 1961, 39 (4), 94-97.
    55 Sirianni, A. F.; Capes, C. E.; Puddington, I. E. Recent experience with the spherical agglomeration process. Can. J. Chem. Eng. 1969, 47 (2), 166-170.
    56 Kawashima, Y.; Capes, C. E. Experimental study of the kinetics of spherical agglomeration in a stirred vessel. Powder Technol. 1974, 10 (1-2), 85-92.
    57 Maghsoodi, M. Effect of process variable on physicomechanical properties of the agglomerates obtained by spherical crystallization technique. Pharm. Dev. Technol. 2011, 16 (5), 474-482.
    58 Huang, A. Y.; Berg, J. C. Gelation of liquid bridges in spherical agglomeration. Colloids Surf. A Physicochem. Eng. Asp. 2003, 215 (1-3), 241-252.
    59 Mahanty, S.; Struti, J.; Patrs, C. N.; Rao, M. E. B. Particle design of drugs by spherical crystallization techniques. Int. J. Pharm. Sci. Nanotechnol. 2010, 3 (2), 912-918.
    60 Kovačič, B.; Vrečer, F.; Planinšek, O. Spherical crystallization of drugs. Acta Pharm. 2012, 62 (1), 1-14.
    61 Yadav, V. B.; Yadav, A.V. Effect of different stabilizers and polymers on spherical agglomerates of gresiofulvine by emulsion solvent diffusion (ESD) system. Int. J. Pharm. Tech. Res. 2009, 1 (2), 149-150.
    62 Garg, J.; Khatry, S.; Arora, S. Spherical crystallization: An overview. Int. J. Pharm. 2012, 4 (1), 1909-1928.
    63 Gohel, M. C.; Parikh, R. K.; Shah, H.; Dubey, R. R. Improvement in flowability and compressibility of ampicillin trihydrate by spherical crystallization. Indian J. Pharm. Sci. 2003, 65 (6), 634-637.
    64 Bharti, N.; Bhandari, N.; Sharma, P.; Singh, K.; Kumar, A. Spherical crystallization: A novel drug delivery approach. Asian J. Biomed. Pharm. Sci. 2013, 3 (18), 10-16.
    65 Sano, A.; Kuriki, T.; Kawashima, Y.; Takeuchi, H.; Hino, T.; Niwa, T. Particle design of tolbutamide by the spherical crystallization technique. V. Improvement of dissolution and bioavailability of direct compressed tablets prepared using tolbutamide agglomerated crystals. Chem. Pharm. Bull. 1992, 40 (11), 3030-3035.
    66 Kawashima, Y.; Handa, T.; Takeuchi, H.; Okumura, M.; Katou, H.; Nagata, O. Crystal modification of phenytoin with polyethylene glycol for improving mechanical strength, dissolution rate and bioavailability by a spherical crystallization technique. Chem. Pharm. Bull. 1986, 34 (8), 3376-3383.
    67 Pawar, A. P.; Paradkar, A. R.; Kadam, S. S.; Mahadik, K. R. Crystallo-co-agglomeration: a novel technique to obtain ibuprofen-paracetamol agglomerates. AAPS PharmSciTech. 2004, 5 (3), 57-64.

    Chapter 2
    1 Nomura, T.; Okinaka, N.; Akiyama, T. Impregnation of porous material with phase change material for thermal energy storage. Mater. Chem. Phys. 2009, 115 (2), 846-850.
    2 Milea, C. A.; Bogatu, C.; Duțǎ, A. The influence of parameters in silica sol-gel process. Bulletin of the Transilvania Unversity of Brașov Series I: Engineering Sciences 2011, 4 (53), 59-66.
    3 Chiralt, A.; Fito, P.; Andrés, A.; Barat, J. M.; Martínez-Monzó, J.; Martíinez-Navarrete, N. Processing foods: Quality optimization and process assessment (food engineering & manufacturing). Boca Raton, Fla. 1st ed. 1999. Chapter 20, 341-356.
    4 Chow, A. H. L.; Leung, M. W. M. A study of the mechanisms of wet spherical agglomeration of pharmaceutical powders. Drug Dev. Ind. Pharm. 1996, 22 (4), 357-371.
    5 Lee, T.; Hsu, F. B. A cross-performance relationship between Carr’s index and dissolution rate constant: The study of acetaminophen batches. Drug Dev. Ind. Pharm. 2007, 33 (11), 1273-1284.
    6 Lin, P. Y.; Lee, H. L.; Lee, T. Effects of baffle configuration and tank size on spherical agglomerates of dimethyl fumarate in a common stirred tank. Int. J. Pharm. 2015, 495 (2), 886-894.

    Chapter 3
    1 Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure & Appl. Chem. 1985, 57 (4), 603-619.
    2 Tan, Y. H.; D, J. A.; Fujikawa, K.; Ganesh, N. V.; Demchenko, A. V.; Stine, K. J. Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy. J. Mater. Chem. 2012, 22 (14), 6733-6745.
    3 Liu, J. L.; Lin, R. B. Structural properties and reactivities of amino-modified silica fume solid sorbents for low-temperature CO2 capture. Powder Technol. 2013, 241, 188-195.
    4 Wang, C.; Feng, L.; Li, W.; Zheng, J.; Tien, W.; Li, X. Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: The influence of the pore structure of the carbon materials. Sol. Energy Mater. & Sol. Cells 2012, 105, 21-26.
    5 Galarneau, A.; Desplantier, D.; Dutartre, R.; Renzo, F. D. Micelle-templated silicates as a test bed for methods of mesopore size evaluation. Micropor. Mesopor. Mater. 1999, 27 (2-3), 297-308.
    6 Guo, Q.; Wang, T. Influence of SiO2 pore structure on phase change enthalpy of shape-stabilized polyethylene glycol/silica composites. J. Mater. Sci. 2013, 48 (10), 3716-3721.
    7 Alkan, C.; Günther, E.; Hiebler, S.; Ensari, Ö. F.; Kahraman, D. Polyethylene glycol-sugar composites as shape stabilized phase change materials for thermal energy storage. Polym. Compos. 2012, 33(10), 1728-1736.
    8 Li, J.; He, L.; Liu, T.; Cao, X.; Zhu, H. Preparation and characterization of PEG/SiO2 composites as shape-stabilized phase change materials for thermal energy storage. Sol. Energy Mater. & Sol. Cells. 2013, 118, 48-53.
    9 Liao, C. S.; Ye, W. B. Structure and conductive properties of poly(ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes. Electrochim. Acta 2004, 49 (27), 4993-4998.
    10 Dwyer, L. M.; Michaelis, V. K.; O’Mahony, M.; Griffin, R. G.; Myerson, A. S. Confined crystallization of fenofibrate in nanoporous silica. CrystEngComm 2015, 17 (41), 7922-7929.
    11 Pielichowski, K.; Flejtuch, K. Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polym. Adv. Technol. 2002, 13 (10-12), 690-696.
    12 Pielichowski, K.; Flejtuch, K. Differential scanning calorimetry study of blends of poly(ethylene glycol) with selected fatty acids. Macromol. Mater. Eng. 2003, 288 (3), 259-264.
    13 Hu, J.; Yu, H.; Chen, Y.; Zhu, M. Study on phase-change characteristics of PET-PEG copolymers. J. Macromol.Sci. B- Phys. 2006, 45 (4), 615-621.
    14 Lee, J. A.; Rösner, H.; Corrigan, J. F.; Huang, Y. Phase transitions of naphthalene and its derivatives confined in mesoporous silicas. J. Phys. Chem. C. 2011, 115 (11), 4738-4748.
    15 Wunderlich, B. One hundred years research on supercooling and superheating. Thermochim. Acta 2007, 461 (1), 4-13.
    16 Srivastava, V.; Agarwal, V. C.; Kumar, R.; Mehta, P. K. Silica fume – an admixture for high quality concrete. J. Environ. Nanotechnol. 2013, 2, 53-58.
    17 Morishima, K.; Kawashima, Y.; Kawashima, Y.; Takeuchi, H.; Niwa, T.; Hino, T. Micromeritic characteristics and agglomeration mechanisms in the spherical crystallization of bucillamine by the spherical agglomeration and the emulsion solvent diffusion methods. Powder Technol. 1993, 76 (1), 57-64.

    Chapter 4
    1 Wang, W. L.; Yang, X. X.; Fang, Y. T.; Ding, J.; Yan, J. Y. Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage. Appl. Energ. 2009, 86 (9), 1479-1783.
    2 Feng, L.; Zheng, J.; Tang, H.; Guo, Y.; Li, W. Li, X. Preparation and characterization of polyethylene glycol/active cabon composites as shape-stabilized phase change materials. Sol. Energy Mater. Sol. Cells 2011, 95 (2), 644-650.
    3 Abhat, A. Low temperature latent heat thermal energy storage: heat storage materials. Sol. Energy 1983, 30 (4), 313-332.

    QR CODE
    :::