| 研究生: |
陳湘婷 Shiang-Ting Chen |
|---|---|
| 論文名稱: |
含單一三價銪或釤配位聚合物內淬熄過程之研究 Investigation of Quenching Processes in the Coordination Polymers Containing Single Trivalent Europium or Samarium |
| 指導教授: |
張伯琛
Bor-Chen Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 稀土元素 、光致放光光譜 、激發光譜 、時間解析光譜 、淬熄機制 |
| 外文關鍵詞: | Rare earth elements, Photoluminescence spectra, Excitation spectra, Time-Resolved spectra, Quenching mechanism |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用光致放光光譜、激發光譜及時間解析光譜分析以中溫水熱法合成之單一三價鑭系配位聚合物(R2(C8H10O4)3, R = Tb, Eu, Sm)與不同比例之混合三價釔鑭配位聚合物(YXR2-x(C8H10O4)3, R = Tb, Eu, Sm)。配位中心為三價稀土離子(Y, Tb, Eu, Sm),配位基為1,4-cyclohexanedicarboxylate (C8H10O4,簡稱CHDC)。單晶及粉末X光繞射實驗鑑定合成之晶體結構與純度,再經由感應耦合電漿原子發射光譜分析儀確認配位中心之稀土元素的實際比例。先前研究發現YxTb2-x(CHDC)3中並不存在濃度淬熄效應,但Tb2(CHDC)3仍有較快的放光衰退行為,為能夠徹底闡明含單一三價鑭系配位聚合物(R2(CHDC)3¬, R = Tb, Eu, Sm)中此一機制,本論文以激發至三價鑭系最低上能階的激發波長取得R2(CHDC)3¬ and YxR2-x(CHDC)3 (R = Eu, Sm)之新的光致放光光譜與放光衰退曲線,發現新的能量轉移及淬熄現象,藉由分析這些放光衰退曲線成功地建立單一三價鑭系配位聚合物內之能量轉移與淬熄模型來闡明其較快的發光速率。但Sm2(CHDC)3中可能存在著較為複雜的淬熄行為,可由觀測到的光譜資料推測其原因。
Photoluminescence (PL), excitation, and time-resolved spectra were obtained for the coordination polymers including R2(C8H10O4)3 and YxR2-x(C8H10O4)3 (R = Tb, Eu, Sm) synthesized by mid-temperature hydrothermal method. The ligand is 1,4-cyclohexanedicarboxylate (C8H10O4, CHDC). Single and powder X-ray diffraction data confirm the structure and purity of these compounds. Inductively-coupled plasma atomic emission spectroscopy (ICP-AES) verifies the elemental compositions of coordination centers. Previous study found no concentration quenching in the YxTb2-x(CHDC)3 compounds, but Tb2(CHDC)3 still has a faster emission decay rate. This thesis adopts the excitation wavelengths which respectively pump trivalent lanthanides to lowest upper states to record new PL spectra and emission decay curves of R2(CHDC)3¬ and YxR2-x(CHDC)3 (R = Eu, Sm). New energy transfer and quenching phenomena were observed. Based on the analysis of these new data, a model of the energy transfer and quenching processes in the R2(CHDC)3 compounds is successfully established for elucidating the faster emission decays. On the other hand, more complicated quenching behaviors were discovered in Sm2(CHDC)3 and the observed spectroscopic data reveal the possible factors.
1.Wang, P.; Ma, J. P.; Dong, Y. B.; Huang, R. Q. Tunable luminescent lanthanide coordination polymers based on reversible solid-state ion-exchange monitored by ion-dependent photoinduced emission spectra. Journal of the American Chemical Society 2007, 129, 10620-10621.
2.Jin J.; Niu S.; Han Q.; Chi Y. Synthesis and structure of a series of new luminescent Ag–Ln coordination polymers and the influence of the introduction of an Ag(I) ion on NIR luminescence from the Ln(III) centre. Journal of Chemistry 2010, 34, 1176–1183.
3.Li, Y. J.; Yan, B.; Li, Y. Lanthanide (Eu3+, Tb3+) centered mesoporous hybrids with 1,3-diphenyl1,3-propanepione covalently linking SBA-15 (SBA-16) and poly(methylacrylic acid). Chemistry – An Asian Journal 2010, 5, 1642-1651.
4.Carnall, W. T.; Goodman, G. L.; Rajnak, K.; Rana, R. S. A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3. The Journal of Chemical Physics 1989, 90, 3443-3457.
5.蕭郁如. 國立中央大學化學學系碩士論文. (2014).
6.Shionoya, S.; Yen, W. M.; Yamamoto, H. Phosphor handbook , CRC press, New York, 2007.
7.Dexter, D. L.; Schulman, J. H. Theory of concentration quenching in inorganic phosphors. The Journal of Chemical Physics 1954, 22, 1063-1070.
8.陳冠輝, 國立中央大學化學學系碩士論文. (2018)
9.Ferreira, A.; Ananias, D.; Carlos, L. D.; Morais, C. M.; Rocha, J. Novel microporous lanthanide silicates with tobermorite-like structure. Journal of The American Chemical Society 2003, 125, 14573-14579.
10.Wanklyn, B. M. The flux growth of single crystals of rare earth perovskites (orthoferrites, orthochromites and aluminates). Journal of Crystal Growth 1969, 5, 323-328.
11.West, A. R. Solid State Chemistry and Its Applications, New York, 1984.
12.Gupta, B. K.; Haranath, D.; Saini, S.; Singh, V. N.; Shanker, V. Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications. Nanotechnology 2010, 21, 055607-055615.
13.Johnson, J. W.; Jacobson, A. J. Redox intercalation reactions of VOPO4·2H2O. Angewandte Chemie International Edition 1983, 22, 412-413.
14.Rabenau, A. The role of hydrothermal synthesis in preparative chemistry. Angewandte Chemie International Edition 1985, 24, 1026-1040.
15.陳逸翔, 國立中央大學化學系碩士論文. (2012).
16.林士群, 國立中央大學化學系碩士論文. (2017).
17.李穗美, 國立中央大學化學系碩士論文. (2015).
18.An, Y.; Schramm, G. E.; Berry, M. T. Ligand-to-metal charge-transfer quenching of the Eu3+ (5D1) state in europium-doped tris (2,2,6,6-tetramethyl-3,5-heptanedionato)gadolinium (III). Journal of Luminescence 2002, 97, 7-12.
19.Carlos L. D.; Videria A. L. L. Emission spectra and local symmetry of the Eu3+ ion in polymer electrolytes. Physical Review B 1994, 49, 11721-11727.
20.Pavitra, E.; Raju, G. S. R.; Ko, Y. H.; Yu, J. S. A novel strategy for controllable emissions from Eu3+ or Sm3+ ions co-doped SrY2O4:Tb3+ phosphors. Physical Chemistry Chemical Physics 2012, 14, 11296–11307.
21.Ramya, A. R.; Sharma, D.; Natarajan, S.; Reddy, M. L. P. Highly luminescent and thermally stable lanthanide coordination polymers designed from 4‑(Dipyridin-2-yl)aminobenzoate: efficient energy transfer from Tb3+ to Eu3+ in a mixed lanthanide coordination compound, Inorganic Chemistry 2012, 51, 8818−8826.
22.楊心福, 國立中央大學化學學系碩士論文. (2018).
23.Solarz, P.; Karbowiak, M.; Glowacki, M.; Berkowski, M.; Diduszko, R.; Ryba-Romanowski, W. Optical spectra and crystal field calculation for SrB4O7:Sm2+. Journal of Alloys and Compounds 2016, 661, 419-427.
24.Knope, K. E.; de Lill, D. T.; Rowland, C. E.; Cantos, P. M. Uranyl sensitization of samarium(III) luminescence in a two-dimensional coordination polymer. Inorganic Chemistry 2012, 51, 201-206.