跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳孟哲
Meng-Che Wu
論文名稱: 影像融合技術應用於地表分類之探討
A study of image fusion applied in land cover classification
指導教授: 陳錕山
K.S. Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
畢業學年度: 93
語文別: 英文
論文頁數: 96
中文關鍵詞: 影像融合
外文關鍵詞: image fusion
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文嘗試討論兩個主題:主題一為利用主成份分
    析PCA方法應用於像元階層資料融合技術的研究。主題二為應用
    Dempster-Shafer evidence theory方法於特徵階層資料融合技術的研
    究。
    在第一個主題中,由於合成孔徑雷達的資料具有全偏極特性,在此
    選取了對植被較為敏感的HV極化合成孔徑雷達資料,與具有光譜特
    性的光學SPOT資料做資料融合處理以利接下來的地物分類。首先,
    本研究利用小波轉換技術來濾除合成孔徑雷達斑駁雜訊,在接下來融
    合步驟中,主成分分析出來的第一部分(PC1)是用做完濾除雜訊後的
    合成孔徑雷達取代,在資料融合後,進行地物分類是採用最大似然法
    來分類融合影像。
    在第二個主題中,利用全偏極雷達資料的極化特性結合SPOT資料
    的光譜特性,其主要目的是為了增加分類的精確度。首先使用李式濾
    波器濾除全偏極雷達資料雜訊,接下來同樣是使用採用最大似然法來
    分類融合影像,(不同的在於全偏極雷達影像使用Wishart機率分布,
    在光學影像採用multivariate Gaussian 機率分布) 將每個類別中每個
    像元屬於某個類別的機率值計算出來, 再利用 Dempster-Shafer
    evidence theory 來結合這些類別的機率值。 最後產生出一張新的分
    類影像。
    實驗的結果顯示分類的精確度比較於未融合的資料都有明顯提升
    的效果,也證明了此兩個資料融合方法對於不同資料特性的融合都是
    很成功的。


    There are two main topics will discuss in this paper, pixel-level image
    fusion based on Principle Component Analysis (PCA), and feature-level
    image fusion based on Dempster-Shafer evidence theory.
    In pixel-level case, the SAR image at HV polarization is relatively
    sensitive to the vegetation canopy. We combined the HV polarization
    information from SAR and spectral characteristic from SPOT images in
    an effort to enhance land cover classification. Before the fusion process,
    wavelet transform was first applied to denoise the SAR image which
    suffers from speckle contamination due to coherent process. The principle
    component analysis (PCA) is used to fuse the SPOT and SAR images. In
    so doing, the PC-1 component is replaced by SAR image (approximation
    image, after wavelet transform) and then the inverse transform is
    followed. At last, the maximum likelihood classifier was used for both
    SPOT-XS images and fusion images.
    In feature-level case, fully polarization information from SAR is used
    to combine with spectral characteristic from SPOT images, mainly to
    enhance land cover classification as well. We first denoise the SAR image
    by Lee filter. Next, the maximum likelihood classifier based on different
    distribution was used for SAR and SPOT images ( Based on Wishart
    distribution and multivariate Gaussian distribution respectively), to
    extract the conditional probability of each pixel for each class.
    Dempster-Shafer evidence theory is then applied, to combine the
    classified results of SAR and SPOT data.
    Experimental results show that the classification accuracy is
    dramatically improved by making use of the proposed methods above.
    Data fusion can take advantage of the use of complementary information
    to obtain a better overall accuracy than using single data source only.

    Chapter 1 Introduction 1 1.1 Image fusion 1 1.2 Objective and motivation 3 Chapter 2 Polarimetric Synthetic Aperture Radar 5 2.1 Polarimetric SAR 5 2.2 Polarimetric description of scatterers 12 2.2.1 Scattering matrix 13 2.2.2 Covariance matrix 14 Chapter 3 Pixel-level image fusion 16 3.1 Wavelet Filter 16 3.2 Fusion method based on principle component analysis 19 3.2.1 Principle component analysis (PCA) 19 3.2.2 Image fusion based on Principle Component Analysis (PCA) 22 3.2.3 Supervised classification based on the Multivariate Gaussian probability density distribution 23 3.3 Experimental test result 28 3.3.1 Test data sets description 28 3.3.2 Classification result and discussion 30 Chapter 4 Feature-level image fusion 45 4.1 Dempster-Shafer evidence theory 45 4.2 Maximum likelihood classifier based on the complex Wishart distribution 54 4.3 Experimental test result 55 4.3.1 Test data sets description 55 4.3.2 Supervised classification case 59 4.3.3 Unsupervised classification case 70 Chapter 5 Conclusion 80 Reference …………………………………………………………...………………..82

    [1] CHENG, P., Toutin, T., and POHL, C., 1995, A comparison of
    geometric models for multisource data fusion. Remote Sensing, GIS
    and GPS in Sustainable Development and Environmental Monitoring,
    Geoinformatics’ 95, Proceedings of International Symposium, 26-28
    May 1995, Hong Kong (Hong Kong: Chinese University of Hong
    Kong), pp. 11-17.
    [2] GENDEREN, J. L. VAN, and POHL, C., 1994, Image fusion: Issues,
    techniques and applications. Intelligent Image Fusion, Proceedings
    EARSeL Workshop, Strasbourg, France, 11 September 1994, edited by
    J. L. van Genderen and V. Cappellini (Enschede: ITC), pp.18-26.
    [3] HALL, D. L., 1992, Mathematical techniques in multisensor data
    Fusion (Norwood: Artech House Inc.).
    [4] KEYS, L. D., SCHMIDT, N. J., and PHILLIPS, B. E., 1990, A
    prototype example of sensor fusion used for a siting analysis.
    Technical Papers 1990, ACSM-ASPRS Annual Convention, Image
    Processing and Remote Sensing, 4, 238-249.
    [5] ROGERS, R. H., and WOOD, L., 1990, The history and status of
    merging multiple sensor data: an overview. Technical Papers 1990,
    ACSM-ASPRS Annual Convention, Image Processing and Remote
    Sensing, 4, 352-360.
    [6] SHEN, S. S., 1990, Summary of types of data fusion methods utilized
    in workshop papers. Multisource Data Integration in Remote Sensing,
    Proceedings of Workshop, Maryland, U.S.A., 14-15June 1990, NASA
    Conference Publication 3099 (Greenbelt, MD: NASA), pp.145-149.
    [7] TOUTIN, T., 1994, Multisource data integration with an integrated
    and unified geometric modeling. Proceedings of 14th EARSeL
    Symposium on Sensors and Environmental Applications, 6-8 June
    1994, Goteborg, Sweden (Paris: European Space Agency), pp.163-174
    [8] Ulaby, F. T., C. Elachi, Radar Polarimetry for Geoscience
    Applications, Artech House, 1990.
    [9] J.S. Lee M.R. Grunes, T.L. Ainsworth, L. Du, D.L. Schuler, S.R.
    Cloude, <<Unsupervised Classification of Polarimetric SAR Images
    by Applying Target Decomposition and Complex Wishart Distribution
    >> PIERS 1998, Nantes, France, 13-17 July 1998, also IEEE TGRS,
    vol. 37, no.5, pp2249-2258, Sept. 1999.
    [10] E. Rignot, R. Chellappa, and P. Dubois, “Unsupervised segmentation
    of polarimetric SAR data using the covariance matrix,” IEEE Trans.
    Geosci. Remote Sensing, vol.30, pp.697-705, July 1992.
    [11] J. J. van Zyl, “Unsupervised classification of scattering mechanisms
    using radar polarimetry data,” IEEE Trans. Geosci. Remote Sensing,
    vol. 27, pp.36-45, Jan. 1989.
    [12] S. R. Cloude and E. Pottier, “An entropy based classification scheme
    for land applications of polarimetric SAR,” IEEE Trans. Geosci.
    Remote Sensing, vol.35, pp.68-78, Jan. 1997.
    [13] J. S. Lee et al., “Intensity and phase statistics of multilook
    polarimetric and interferometric imagery,” IEEE Trans. Geosci.
    Remote Sensing, vol.32, Sept. 1994.
    [14] S. R. Cloude and E. Pottier, “A review of target decomposition
    theorems in radar polarimetry,” IEEE Trans. Geosci. Remote Sensing,vol. 34, pp.498-518, Mar. 1996
    [15] T. Lee, J. A. Richards, and P. H. Swain, “Probabilistic and evidential
    approaches for multisource data analysis,” IEEE Trans. Geosci.
    Remote Sensing, vol. GRS-25, pp. 283-293, May 1987.
    [16] A. H. Schistad Solberg, A. K. Jain, and T. Taxt, “Multisource
    classification of remotely sensed data: Fusion of Landsat TM and
    SAR images,” IEEE Trans. Geosci. Remote Sensing, vol.32,
    pp.768-778, July 1994.
    [17] Misiti, M., 2002. Wavelet toolbox for use with matlab. Wavelet
    toolbox user’s guide by the MathWorks Inc. http://www.mathworks.com/access/helpdesk/help/pdf_doc/wavlet/wavelet_ug.pdf. (accessed 04/15/2004)
    [18] Pohl, C., van Genderen, J. L., 1998. Multisensor image fusion in
    remote sensing: concepts, methods and applications. Int. J. Remote
    Sensing, vol.19, No.5, pp. 823-854.
    [19] Zhou, J., Civco, D.L. and Silander, J.A, 1998, A wavelet transform
    method to merge Landsat TM and SPOT panchromatic data. Int. J.
    Remote Sensing, vol.19, No.4, pp.743-757.
    [20] Carper, W.J., Lilesand, T.W., Kie.er, R.W., 1990. The use of
    Intensity-Hue-Saturation transformation for merging SPOT
    panchromatic and multispectral image data, RE&RS 56 (4) 459-467.
    [21] Chavez, P.S., Sides, S.C., Anderson, J.A., 1991. Comparison of three
    different methods to merge multiresolution and multispectral data:
    Landsat TM and SPOT panchromatic, PE&RS(57) 295-303.
    [22] D. Dubois, H. Prade, Representation and combination of uncertainty
    with belief functions and plausibility measures, Comput. Intell. 4
    (1998) 244-264.
    [23] S. Le Hégarat-Mascle, I. Bloch, D. Vidal-Madjar, Application of
    Dempster-Shafer evidence theory to unsupervised classification in
    multisource remote sensing, IEEE Trans. Geosci. Remote Sensing
    35 (4) (1997)
    [24] 陳家堂, “全偏極合成孔徑雷達於目標分類之研究,” 國立中
    央大學太空科學研究所博士論文, 2002.

    QR CODE
    :::