跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林彥穎
YAN-YING Lin
論文名稱: 以葡萄糖為基質的生物除磷系統體積負荷與磷負荷對代謝行為與菌相影響之研究
Functional Dynamics and Microbial Community Structure of EBPR system fde with Glucose as Main Carbon Source:Impact of COD Volumetric and Phosphorus Loading
指導教授: 劉文佐
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 82
中文關鍵詞: 螢光原位雜交法變性梯度凝膠電泳法生物除磷系統肝醣積蓄菌葡萄糖PHA 染色Neisser 染色INT
外文關鍵詞: PHA stain, FISH, DGGE, EBPR, GAOs, glucose
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 由水質實驗的代謝表現、變性梯度凝膠電泳法(Denaturing Gradient Gel Electrophoresis, DGGE)圖譜與菌群染色觀察發現下可知本研究的除磷系統在葡萄糖馴養的情形下,體積負荷比磷負荷對系統的影響較大,因此相對的對菌群的影響力也大,且兩反應槽的進流葡萄糖濃度與系統的除磷效率成反比。在低體積負荷時,兩反應槽有部份的釋磷/攝磷現象,而經由厭氧批次實驗可知,兩者所馴養的菌群在攝取葡萄糖與醋酸時有明顯的差異,當以乳酸為基質時,微生物亦不能適應,且由PHA的組成可知兩反應槽的代謝途徑不同。當兩反應槽提高負荷後,發現兩者幾乎沒有除磷效率,經由厭氧批次實驗可知,兩者所馴養的菌群在攝盡葡萄糖後,會殘留部份不易分解的有機碳,且菌群更不能適應醋酸為碳源,而微生物攝取不同碳源時,PHA皆以3HV為主要組成。
    由PHA、Neisser與glycogen染色實驗得知,單一形態菌種似乎只具有某種特定的功能,即反應槽所表現的總代謝反應為各別種菌群所表現的代謝反應的總集合。本研究亦利用氧化還原染劑INT(3-(4-lodophenyl) -2-(4-nitrophenyl)-5-phenyl- 2H-tetrazoliumchloride)得知,在無外部碳源時,所馴養出的菌群會利用胞內的碳源進行呼吸作用。
    由DGGE分析菌群得知,在低負荷階段長期穩定馴養時,菌群的消長來維持反應槽動態的平衡,而DGGE圖譜經由聚類分析得知,進流體積負荷對菌群結構的影響大於磷負荷對菌群的影響。以螢光原位雜交法(fluorescence in situ hybridization, FISH)分析菌群結構發現GH反應槽的菌群大部分分佈在domain Bacteria中的beta-Proteobacteria和gram positive high G+C,而又以四連球形態出現的gram positive high G+C為最多,且推測其有大量累積肝醣的功能與有多樣性,而屬於beta-Proteobacteria的桿菌則有累積PHA的功能。



    In this study, two SBR reactors fed with glucose as main carbon source but with different influent P/C (2/100, 6/100 respectively) were operated at low (0.158 kg-COD/m3-d) and high (0.316 kg-COD/m3-d) volumetric loadings to study the biochemical characteristics and microbial community structures of systems influenced by glucose. Operational experiment results indicated that sludge from both reactors displayed anaerobic phosphorus release and aerobic uptake at low loading stage. As the influent loading was increased, the release and uptake of phosphorus were ceased. Anaerobic batch experiments showed that sludge from different influent P/C ratio reactor both absorbed glucose and transformed it into carbohydrate. When acetate replaced glucose as substrate, extracellular carbon was absorbed slowly and accumulated mainly as polyhydroxyalkanoate (PHA) while intracellular carbohydrate was degraded. Sludge assimilated glucose first and utilized acetate as glucose and acetate were mixed as carbon source. As lactate was applied, it was degraded by sludge slowly; this showed that no lactate utilizing bacteria existing in the SBRs.
    On the aspects of microbial community structure, cluster analysis of DGGE spectrum exhibited that bacterial communities were more impacted by volumetric loading rather than by influent P/C ratio. Fluorescence in situ hybridization (FISH) showed that almost 50% of DAPI-stained cell were Gram-positive HGC members and appeared tetrad forming morphologically. The second predominant group was cocci belonged to the beta-Proteobacteria and it accounted for 10-30% DAPI stained cell. The Gram-positive HGC tetrad-forming bacteria were diversified in the polyphosphate accumulating ability but they didn’t accumulate PHA. On the other hand, the beta-Proteobacteria cocci accumulated PHA but not polyphosphate. In general, the polyphosphate and PHA accumulating traits showed in batch experiments were the sum of separate physiological traits of different phylogenetical bacterial group.

    第一章前言 1.1 研究源起1 1.2 研究目的2 第二章 文獻回顧 2.1 生物除磷系統理論3 2.1.1 生物除磷原理3 2.1.2 Comeau/Wentzel 與 Mino模式4 2.1.3 polyhydroxyalkanoates (PHA)之產生途5 2.2 除磷系統效率下降的探討6 2.2.1 葡萄糖對除磷系統的影響6 2.2.2 磷負荷對除磷系統的影響8 2.3 生物除磷系統之主要菌相9 2.3.1. 由形態的觀點9 2.3.2. 由代謝行為的觀點10 2.3.3. 由分子生物技術分類的觀點11 2.4 磷積蓄菌與肝醣蓄積菌兩者之間的相互關係14 2.5 分子生物技術原理14 2.5.1 聚合連鎖反應(PCR)14 2.5.2 變性梯度凝膠電泳法(DGGE)15 2.5.3 Tetrazolium salts活性測試16 第三章 實驗設備與方法 3.1 反應槽17 3.1.1. 植種污泥17 3.1.2. 基質組成17 3.1.3. 反應槽啟動和操作17 3.2 水質實驗18 3.2.1 平日水質檢測18 3.2.2 厭氧批次實驗19 3.2.3 水質分析方法19 3.3 菌群結構分析20 3.3.1 DNA萃取20 3.3.2 聚合連鎖反應(PCR)20 3.3.3 變性梯度凝膠電泳法(DGGE)22 3.3.4 螢光原位雜交法(FISH)24 3.4 染色及顯微鏡觀察25 3.5 INT染色實驗25 3.6 實驗設備26 第四章 結果與討論 4.1 反應槽表現27 4.1.1 Run1階段兩反應槽表現27 4.1.2 Run2階段兩反應槽表現28 4.1.3 兩反應槽表現總結29 4.2 厭氧批次實驗30 4.2.1 Run1階段厭氧批次實驗30 4.2.2 Run2階段厭氧批次實驗31 4.2.3 厭氧批次實驗之總結32 4.3 變性梯度凝膠電泳(DGGE)菌群結構變化分析33 4.3.1 穩定馴養時之菌群結構變化33 4.3.2 不同負荷對於菌群結構變化34 4.4 菌相型態與功能觀察36 4.4.1 Run1階段觀察結果36 4.4.2 Run2階段觀察結果37 4.4.3 觀察結果總結37 4.5 判別攝取不同基質(葡萄糖與醋酸)之菌群觀察38 4.6 螢光原位雜交(FISH)菌群變化分析38 4.6.1 以FISH法分析反應槽菌群結構38 4.6.2 FISH與染色法結合或比對之結果40 4.6.3 兩反應槽內四連球菌之分析41 4.6.4 FISH法分析總結42 第五章 結論與建議 5.1 結論43 5.2 建議45

    Bond, P. L.,P. Hugenholtz, J. Keller, and L. L. Blackall.(1995)Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors.Appl.Environ.Microbiol., 61(5),1910-1916
    Bond, P. L.,J. Keller, and L.L. Blackall. (1998)Characterisation of enhanced biological phosphorus removal activated sludge with dissimilar phosporus removal peformanced.Wat.Sci.Tech.37(4-5),567-571
    Bond, P. L.,J. Keller, and L.L. Blackall.(1999a)Bio-P and non-bio-P bacteria identification by a novel microbial approach.Wat.Sci.Tech.39(6),13-20
    Bond, P. L.,R. Erhart,M. Wagner, J.Keller and L. L. lackall.(1999b)Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated ludgesystems.Appl.Environ.Microbiol.65(9), 4077 -4084
    Bradjanovic D.,Hooijmans C. M.,van Loosdrecht M. C. M.,Alaerts G. J. and Heijnen J. J.(1996) The dynamic effects of potassium limitation on biological phosphorus removal. Water Res.30(10),2323-2328
    Brdjannovic D.,van Loosdrecht M.C.M.,Hooijmans C.M.,Mino T.,Alaerts G.J. and Heijnen J.J.(1998)Bioassay for glycogen determination in biological phosphorus removal systems. Wat.Sci.Tech.37(45),541-547
    Cech, J. S. and P. Hartman.(1993) Competition between polyphosphate and polysaccharideaccumulaying bacteria in enhanced biological phosphate removal systems.Wat.Res. 27,1219-1225
    Cech J.S.,P. Hartman and J. Wanner.(1993)Competition between PolyP and non-PolyP bacteria in an enhanced phosphate removal system. Wat.Envir. Res. 65(5)july/August
    Comeau, Y.,K. J. Hall, R. E. W. Hancock and W. K. Oldham.(1986) Biochemical model for enhanced biological phosphorus removal. Wat Res.20,1511-1521
    Tsai, C. S. and W. T. Liu.(2001)Phylogenetic and physiological diversity of Tetrad-Forming Oranisms in deteriorated biological phosphorus removal systems. (Accepted)
    Felske, A.,B. Engelen,U. Nubel and H.backhaus.(1996)Direct ribosomal isolation from soil to extract bacterial rRNA for communityanalysis. Appl.Environ. Microbiol.62:4162-4167
    Flood, J. A.,J. A. Nicholas and C. P. Peter.(1999) Complementary independent molecular, radioisotopic and fluorogenic tecjniques to assess biofilm ommunities two wastewater wetlands.Wat.Sci.Tech. 39(7),65-70
    Fukase, T.,M. Shibata and Y. Miyaji.(1985)The role of an anaerobic sluge on biological phosphorus removal.Wat.Sci.Tech.17,68-80
    Jeon, C. O. and J. M. Park.(2000)Enhanced biological phosphate removal in a quencing batch reactor supplied with glucose as a carbon source.Wat.Res. 34,2160-2170
    Kampfer, P.,R. Erhart,C. Beimfohr, J. Bohringer, M. Wanger and R.Amann (1996)Characterization of bacterial communities form activated sludge:cultur- dependent numerical identification versus in situ identification using group- and genus-specific rRNA-targeted oligonuleotideprobes.Microb.Ecol.,32,101-121
    Kuba, T., A. Wachtmeister,M. C. M. van Loosdrechi and J. J. Heijnen(1994) Effect of nitrate on phosphorus release in biological phosphorus removal ystems. Wat.Sci.Tech.30(6),263-269
    Lee, N.,P. H. Nielsen,K. H. Andreasen,S. Juretschjo,J. L. Nielsen,K-.H. Schleifer and M. Wagner(1999)Combination of Fluorescent In Situ Hybridization and Microautoradiography-a New tool for structure-Function analyses in Microbial ecology. Appl.Environ.Microbiol.May.1999,1289-1297
    Liu, W. T.,T. Mino,K. Nakamura and T. Matsuo.(1994)Role of glycogen in acetate uptake and polyhtdroxyalkanoate synthesis in naerobic-aerobic activated sludge with a minimized polyphosphate content. J. Ferment.Bioeng.77(5),535-540.
    Liu, W. T.,T. Mino,T. Matsuo and K. Nakamura.(1996a)Glycogen accumulating population and its anaerobic substrate uptake in naerobic-aerobic actived sludge without biological phosphorus removal.Wat.Res.30(1),75-82
    Liu, W. T.,T. Mino,K. Nakamura and T. Matsuo.(1997)Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus renoval reactors — effect of P/C feeding ratio.Wat.Res.31, 1430-1997
    Liu, W. T.,A. T. Nielsen.,J. H. Wu,C. S. Tsai,Y. Matsuo and S.Molin(2001)In situ identification of polyphosphate- and polyhydroxyalkanoate- accumulating traits for microbial populations in biological phosphorus removal process. Environ. Microbiol.,3,110-122
    Gribbon, L.T. and M. R. Barker.(1995)Oxidative metabolism in nonculturable Helicobacter pylori and Vibrio vulnificus Cells studied by substrate-enhanced tetrazolium reduction and digital image prodessing. Appl.Environ Microbiol. 61,3379-3384
    Hesselmann, R. P. X.,C. Werlen,D. Hahn,J. R. van der Meer, and A. J. B. Zehnder.(1999)Enrichment,phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge.Syst.Appl.Microbiol.22:44-465
    Hesselmann, R. P. X.,R.V. Rummell,S. M. Resnick,R. Hany and J. B. Zehnder.(2000)Anaerobic Metabolism of Bacteria Performing Enhanced Biological Phosphate removal.Wat.Res.34(14),3487-3494
    Manz, W.,Amann, R. I.,Ludwig, W., Wagner, M. and Schleifer,K. H.(1992)Phylogenetics oligodeoxynucleotide probes for the major subclasses of Proteobacteria:problems and solutions.System Appl Microbiol,15,593-600
    Maurer, M.,W. Gujer,R. Hany and S. Bachmann.(1997) Intracellular carbon flow in phosphorus accumulating organisms from activated sludge systems.Wat.Res. 31(4),907-917
    Mino, T.,H. Satoh and T.Matsuo.(1994) Metabolisms of different bacterial populations in enhanced biological phosphate removal processes.Wat.Sci.Tech.29 (7),.67-70
    Mino, T.,W.T. Liu,H. Satoh and T. Matsuo.(1996) Possible metabolisms of polyphosphate accumulating organisms(PAOs) and glycogen accumulating non-poly-p organisms (GAOs)in the enhanced biological phosphate removal process.Med.Fac.Lanbouww.Univ.Gent,61/4a
    Mino, T.,M. C. M. V. Loosdrecht and J. J. Heijnen.(1998)Microbiology and biochemistry of the enhanced biological phosphorus removal process. Wat.Res. 32,3193-3207
    Maszenan, A. M., R. J. Seviour, B. K. C. Patel, and J. Wanner (2000b)A fluorescently-labelled rRNA targeted oligonucleotide probe for the in situ detection of G-bacteria of the genus Amaricoccus in activated sludge. J. Appl. Microbiol., 88, 1-11.
    Maszenan, A. M., R. J. Seviour, B. K. C. Patel,G. N. Rees, and B. M. McDougall, (1998).The hunt for the G-bacteria in activated sludge biomass. Wat. Sci. Technol., 37(4-5), 65-69.
    Maszenan, A. M.,R. J. Seviour, B. K. C. Patel,P. Schumann, and G. N. Rees, (1999a). Tessaracoccus bendigoensis gen. nov. sp. nov., a gram positive coccus occurring in regular packages or tetrads, isolated from activated sludge biomass. Int. J. Syst. Bacteriol. 49, 459-468.
    Maszenan, A. M., R. J. Seviour,B. K. C. Patel,P. Schumann,P. J. Burghardt, Y. Tokiwa, and H. M. Stratton(2000a)Three isolates of novel polyphosphate accumulating gram positive cocci, obtained from activated sludge belong to a new genus, Tetrasphaera gen. Nov., and description of two new species Tetrasphaera japonica, sp.nov. and Tetrasphaera australiensis, sp. nov. Int. J. Syst. Evol. Microbiol. 50, 593-603.
    Maszenan, A. M.,R. J. Seviour,B. K. C. Patel,P. Schumann,P. J. Burghardt,R. Webb,J. A. Soddel, and G. N. Rees(1999b) Two Gram positive cocci growing in aggregates of repeating groups of cocci isolated from activated sludge foam belong to the genus Friedmanniella as new species Friedmanniella spumicola sp. nov. and Friedmanniella capsulata sp. nov. Int. J. Syst. Bacteriol. 49, 1667-1680.
    Muyzer, G.,E. C. Dewall and A. G. Uitterlinden.(1993)Profiling of complexmicrobial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl.Environ.Microbiol. 59:695-700
    Nielsen, A. T.,W. T. Liu,C. Eilipe,L. Grady, JR.,S. Molin, and D. A. Stahl. (1999) Identification of novel group of bacteria in sludge from a deteriorated biological phosphorus removalreactor. Appl.Envion.Microbiol. 65:1251-1258
    Pereira, H.,P. C. Lemos,M. A. Reis,J. P. S. G. Crespo,M. J. T. Carrondo and H. Santos.(1996)Models for carbon metabolism in biological phosphorus removal processes based on in vivo 13C-NMR labeling experiments.Wat.Res.30(9), 2128-2138
    Randall, A. A.,L. D. Benefield and W. E. Hill (1994) The effect of fermentation products on enhanced biological phosphorus removal,polyphosphate storage,and microbial population dynamics.Wat.Sci.Tech. 30(6) 213-219
    Rodriguez, G. G.,D. Phipps,K. Ishiguro, and H. F. Ridgway (1992) Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl.Environt.Microbiol June 1992,1801-1808
    Sudiana, I. M.,T. Mino,H. Satoh,K. Nakamura and T. Matsuo.(1999)Metabolism ofenhanced biological phosphorus removal and non-enhanced biological phosphorus removal sludge with acetate and glucose as carbon source. Wat.Sci. Tech.39,29-35
    Sathasivan, A.,T. Mino and T. Matsuo.(1993) A deeper look on acetic acid metabolism in bio-P organism,Proc.Annual Conf.Jap.Soc.Water Environ., 27.
    Satoh, H.,T. Mino and T. Matsuo(1992)Uptake of orgqnic substrates and accumulation of polyhydroxyalkanoates linked with glycolysis of intracellular carbohydrates under anaerobic conditions in the biological excess phosphate removal processes.Wat.Sci.Tech. 26,933-942
    Satoh, H.,T. Mino and T. Matsuo(1994)Deterioration of enhanced biological phosphorus removal by the domination of microorganisms without polyphosphate accumulation.Wat.Sci.Tech.30(6),203-211
    Stensel, H.D.,and R. I. Sedlak.(1991)Phosphorus and nitrogen removal from municipal wastewater-Principles and practice.Lewis Publishers.NewYork. 141-163
    Stahl, D.A.,and R. I. Amann.(1991)Development and application of nucleic acid probes In Nucleic acid techniques in bacterial systematics Stackebran- d,E.,Goodfellow,M (eds)New York John Wiley and Sons.205-248
    Sheffield, V. C.,D. R. Cox,L. S. Lerman, and R. M. Myers.(1989)Attachment of a 40-base pair G+C-rich sequence(GC-clamp)to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc.Natl.Acad.Sci.USA 86:232-236
    Shintani T,W. L. Liu,S. Hanada,Y. Kamagate,S.Miyaoka,T. Suzuki, and K. Nakamura.(2000)Micropruina glycogenica gen. nov., sp.nov., a new Gram - positive glycogen-accumulating bacterium isolated from activated sludge.Int T Syst Evol Microbiol 50,201-207
    Smith, J. J. and G.A.Mcfeters(1997) Mechanisms of INT (2-(4-iodophenyl)- 3-(4-nitrophenyl)-5-phenyl tetrazolium chloride),and CTC(5-cyano-2,3-ditolyl tetrazolium chloride) reduction in Escherichia coli K-12. Journal of Microbiological Methods 29,161-175
    Tracy, K. D. and A. Flammino.(1987)Biochemistry and energetics of biological phosphorus removal.In Advances in Water Pollution Control 4:Biological Phosphate Removal from Wastewaters,ed.R.Ramadori,pp.15-26.Pergamon Press, Oxford.
    Wagner, M.,R. Amann,H. Lemmer, and K. H. Schleifer.(1993)Probing activated sludge with oligonucleotides specific for proteobacteria:inadequacy of culture-dependent methods for describing nicrobial community structure. Appl.Environ.Microbiol.59,1520-1525
    Wagner, M.,R. Erthart,W. Manz,R. Amann,H. Lemmer,D. We and K. H. Schleifer.(1994)Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge.Appl.Environ.Microbiol.60(3),792-800)
    Wentzel, M. C.,G. A. Ekama,P. L. Dold,R. E. Loewenthal and G. V. R. Marais (1988)Enhanced polyphosphate organism cultures in activated sludge system-Part1:enhanced culture development.Water SA,14,81-92
    林彥穎、蔡青松、劉文佐,2000,生物除磷系統中以葡萄糖為基質的活性污泥厭氧代謝行為之研究,第二十五屆廢水處理技術研討會論文集,第275-281頁

    QR CODE
    :::