| 研究生: |
廖御超 YU-CHAO LIAO |
|---|---|
| 論文名稱: |
在不同電極火花間距之貧油汽油主要參考燃料的層、紊流最小引燃能量量測 Measurements of Laminar and Turbulent Minimum Ignition Energies on A Lean Gasoline Primary Reference Fuel at Various Electrode-Spark Gaps |
| 指導教授: |
施聖洋
Shenq-Yang Shy |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 層流和紊流最小引燃能量 、紊流促進引燃現象 、最小引燃能量轉變 、火花電極間距效應 、路易斯數效應 |
| 外文關鍵詞: | Laminar and turbulent minimum ignition energies, turbulent facilitated ignition, minimum ignition energy transition, electrode gap distance effects, Lewis number effect |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用高溫高壓雙腔體三維十字型風扇擾動紊流預混燃燒設備,配合電極火花引燃及其能量量測系統,量測汽油主要替代燃料(Primary reference fuel, PRF;即異辛烷加正庚烷)之層流與紊流最小引燃能量(Laminar and turbulent minimum ignition energy, MIET and MIEL)。此外,本實驗利用燃油預蒸發系統與加熱系統以確保PRF能夠被完全汽化。實驗條件為初始溫度T = 373K、初始壓力P = 1atm、當量比(equivalence ratio) = 0.8,其有效Lewis數為Le ≈ 2.95 > 1,方均根紊流擾動速度u' = 0 ~ 3.68 m/s。實驗結果主要包含三個部分:(1)量測PRF於不同混合比例下即不同辛烷值(Research octane number, RON = 0 - 100)之MIEL。實驗結果發現MIEL首先會隨著RON的上升而緩慢上升,當經過一臨界值約RON = 90時,MIEL會劇烈上升,整體呈現一非線性曲線。 (2)選定PRF95於不同電極探針間距(Electrode gap distance, dgap = 0.8 ~ 2.0 mm)條件下,進行層流(u' = 0 m/s)與紊流(u' = 2.76 m/s)之MIE量測,探討MIET與MIEL隨dgap之變化,並嘗試找出發生紊流促進引燃現象(Turbulent facilitate ignition, TFI)即MIET < MIEL之臨界dgap。實驗結果發現TFI僅存在於dgap = 0.8 mm,此時MIET = 30.1 mJ < MIEL = 26.8 mJ。在dgap = 1.0 mm時MIET = 24.4 mJ ≈ MIEL = 24.9 mJ,而在dgap = 1.5 與2.0 mm情況下,MIET >> MIEL,由以上結果可推測發生TFI的臨界電極探針間距為dgap = 1.0 mm。此外,根據MIET與MIEL隨dgap變化之關係,我們發現MIEL約正比於dgap-3,而MIET則正比於dgap-0.3,可知MIEL對於dgap的變化較MIET敏感。(3)選定dgap = 0.8與2.0 mm條件下,分別量測其紊流效應。在固定dgap = 0.8 mm條件下,我們發現MIET值隨著u'值之增加呈現非單調曲線,即當u' < 2.76 m/s有TFI (MIET < MIEL),最小MIET值發生於u' = 1.84 m/s,而當u' > 2.76 m/s時,MIE會大幅度地上升,此時MIET > MIEL,情節又回到傳統認知,即紊流會使引燃更加困難。而於2.0 mm情況下,我們發現一MIE轉變(MIE Transition)現象,MIET值會先隨著u'值增加而呈線型上升,於u' = 2.3 m/s後,MIET值會隨u'值之增加而呈指數性急遽地增加。此外,計算發生MIE轉變臨界點之Karlovitz數(Karlovitz number),即臨界Karlovitz數(Kac),將之與先前文獻所量測之不同燃料:貧油氫氣( = 0.18, Le = 0.3)、富油氫氣( = 5.1, Le = 2.3)、甲烷( = 0.6-1.3, Le ≈ 1.0)與貧油異辛烷( = 0.8, Le = 2.98)進行比較,觀測Kac隨Le的變化。結果發現Kac會隨著Le的上升而下降,呈現一關係式:Kac ~ Le-2,顯示在預混紊流火燄區域圖(Regime diagram of premix turbulent flames)中發生MIE轉變之標準需考量Le之變化。
This thesis measures laminar and turbulent minimum ignition energies (MIET and MIEL) for binary blends of iso-octane and n-heptane, referred to as Primary Reference Fuel (PRF), at initial condition of T = 373K, P = 1 atm, equivalence ratio = 0.8 with effective Lewis number Le = 2.95 >> 1 over wide ranges of r.m.s. turbulent fluctuation velocity u' = 0 ~ 3.68 m/s. Spark ignition experiments are conducted in a high pressure/temperature, fan-stirred, large dual-chamber, premixed turbulent 3D cruciform combustion facility capable of generating isotropic turbulence with electrical spark ignitor and energy measurement system. A heating system and a pre-vaporized system are applied to make sure that PRF can be well evaporated. The results mainly consist of three parts: (1) MIEL is measured on the blends of iso-octane and n-heptane showing the effect of research octane number (RON). Result shows that the MIEL firstly increases gradually with RON. Then, after a critical value about RON = 90, the MIEL increases drastically showing a non-linear curve. (2) The MIE of PRF95/air mixture is measured under laminar (u' = 0 m/s) and turbulent (u' = 2.76 m/s) condition with different electrode gap distance (dgap) and trying to find the critical dgap that occurs turbulent facilitate ignition (TFI, namely MIET < MIEL). Results show that TFI is found only at dgap = 0.8 mm < 1 mm that MIET = 30.1 mJ < MIEL = 26.8 mJ, while MIET = 24.4 mJ ≈ MIEL = 24.9 mJ at dgap = 1 mm. The situation comes back to common notion that turbulence makes ignition more difficult that MIET > MIEL at dgap = 1.5 and 2 mm > 1 mm. The result suggests that the critical dgap might be dgap = 1 mm. Moreover, according to the correlation of MIE and dgap, MIEL is proportional to dgap-3, but MIET is proportional to dgap-0.3 showing that MIEL is relatively sensitive to dgap effect compare to MIET. (3) MIET is measured over a wide range of u' with two different dgap which is 0.8 mm (TFI) and 2.0 mm (No TFI), respectively. At dgap = 0.8 mm, we discover the curve of MIET versus u' is non-monotonic: TFI (MIET < MIEL) occurs when u' < 2.76 m/s, where the lowest MIET takes place at u' = 1.84 m/s. When u' > 2.76 m/s, MIET increases drastically and the scenario returns back to the common notion that turbulence renders ignition more difficult. Furthermore, at dgap = 2 mm, a MIE transition is found, in which the value of MIET firstly increases linearly with the increase of u' and then its increase becomes exponentially when u' > 2.3 m/s. Moreover, the critical Karlovitz number (Kac) indicating the Ka at turning point of MIE transition is calculated. The result plotted with previous data: lean hydrogen ( = 0.18, Le = 0.3), rich hydrogen ( = 5.1, Le = 2.3), methane ( = 0.6 ~ 1.3, Le ≈ 1.0), and iso-octane ( = 0.8, Le = 2.98). It shows that Kac increases with the decrease of Le having a correlation of Kac ~ Le-2, which suggests that the criterion of Kac that occurs MIE transition in Borghi diagram should consider about the effect of Le.
[1] https://www.statista.com/statistics/827460/global-car-sales-by-fuel-technology/
[2] The European Commission. Reducing CO2 emissions from passenger cars. https://ec.europa.eu/clima/policies/transport/vehicles/cars_en#tab-0-0
[3] Council of the EU. CO2 emission standards for cars and vans: Council confirms agreement on stricter limits. https://www.consilium.europa.eu/en/press/press-releases/2019/01/16/co2-emission-standards-for-cars-and-vans-council-confirms-agreement-on-stricter-limits/
[4] https://www.isuzu.co.jp/world/technology/clean/diesel_gasoline02.html
[5] ”Jidosha-Gijutsu year book” Journal of Society of Automotive Engineers of Japan, Vol. 71, 2017
[6] https://www8.cao.go.jp/cstp/panhu/sip_english/4-6.pdf
[7] K. Maruta, H. Nakamura, Super Lean-burn in SI Engine and Fundamental Combustion Studies, J. Combust. Soc. JPN. 183 (2016) 9-19.
[8] N. Hayashi, A. Sugiura, Y. Abe, K. Suzuki, Development of Ignition Technology for Dilute Combustion Engines. SAE International Journal of Engines 10 (2017) 984-995.
[9] K. Nakata, S. Nogawa, D. Takahashi, Y. Yoshihara, A. Kumagai, T. Suzuki, Engine Technologies for Achieving 45% Thermal Efficiency of S.I. Engine, SAE International Journal of Engines 9 (2016) 179-192.
[10] N. Peters, Premixed Lean and Turbulent Combustion Technology, Journal of Fluid Mechanics 384 (1999) 107-132
[11] M. AlAbbada, T. Javeda, F. Khaleda, J. Badrab, A. Farooq, Ignition delay time measurements of primary reference fuel blends, Combust. Flame 178 (2017) 205-216.
[12] C.C. Huang, S.S. Shy, C.C. Liu, Y.Y. Yan, A transition on minimum ignition energy for lean turbulent methane combustion in flamelet and distributed regimes, Proc. Combust. Inst. 31 (2007) 1401-1409.
[13] S.S. Shy, W.T. Shih, C.C. Liu, More on minimum ignition energy transition for lean premixed turbulent methane combustion in flamelet and distributed regimes, Combust. Sci. Technol. 180 (2008) 1735-1747.
[14] S.S. Shy, C.C. Liu, W.T. Shih. Ignition transition in turbulent premixed combustion. Combust. Flame 157 (2010) 341-350.
[15] M.W. Peng, S.S. Shy, Y.W. Shiu, C.C. Liu, High pressure ignition kernel development and minimum ignition energy measurements in different regimes of premixed turbulent combustion, Combust. Flame 160 (2013) 1755-1766.
[16] S.S. Shy, Y.W. Shiu, L.J. Jiang, C.C. Liu, S. Minaev, Measurement and scaling of minimum ignition energy transition for spark ignition in intense isotropic turbulence from 1 to 5 atm, Proc Combust. Inst. 36 (2016) 1785-1791.
[17] L.J. Jiang, S.S. Shy, M.T. Nguyen, S.Y. Huang, D.W. Yu, Spark ignition probability and minimum ignition energy transition of the lean iso-octane/air mixture in premixed turbulent combustion, Combust. Flame 187 (2018) 87-95.
[18] S.S. Shy, M.T. Nguyen, S.Y. Huang, Effects of electrode spark gap, differential diffusion, and turbulent dissipation on two distinct phenomena: Turbulent facilitated ignition versus minimum ignition energy transition, Combust. Flame 205 (2019) 371-377.
[19] K. Ishii, O. Aoki , Y. Ujiie, M. Kono, Investigation of ignition by composite sparks under high turbulence intensity conditions. Symp. Combust 24 (1992) 1793-1798.
[20] F. Wu, A. Saha, S. Chaudhuri, C.K. Law, Facilitated ignition in turbulence through differential diffusion, Physical Review Letter 113 (2014) 024503(1-5).
[21] S.S. Shy, M.T. Nguyen, S.Y. Huang, C.C. Liu, Is turbulent facilitated ignition through differential diffusion independent of spark gap? Combust. Flame 185 (2017) 1-3.
[22] C.V. Callahan, T.J. Held, F.L. Dryer, R. Minetti, M. Ribaucour, L.R. Scochet, T. Faravelli, P. Gaffuri, E. Rani, Experimental data and kinetic modeling of primary reference fuel mixtures, Symp. (Int.) Combust. 26 (1996) 739-746.
[23] K. Fieweger , R. Blumenthal , G Adomeit ,Self-ignition of S.I. engine model fuels: a shock tube investigation at high pressure, Combust. Flame 109 (1997) 599–619.
[24] S. Tanaka, F. Ayala, J.C. Keck, A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine, Combust. Flame 133 (2003) 467–481.
[25] S. Tanaka, F. Ayala, J.C. Keck, J.B. Heywood, Two-stage ignition in HCCI combustion and HCCI control by fuels and additives, Combust. Flame 132 (2003) 219–239.
[26] M.E. Baumgardner, S.M. Sarathy, A.J. Marchese, Autoignition Characterization of Primary Reference fuels and n-heptane/n-butanol mixtures in a constant volume combustion device and homogeneous charge compression ignition engine, energy fuels 27 (2013) 7778-7789.
[27] S.M. Sarathy , G. Kukkadapu , M. Mehl , W. Wang , T. Javed , S. Park , M.A . Oehlschlaeger , A . Farooq , W.J. Pitz , C.-J. Sung , Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures, Proc. Combust. Inst. 35 (2015) 249–257.
[28] Y. Huang, C.J. Sung, J.A. Eng, Laminar flame speeds of primary reference fuels and reformer gas mixtures, Combust. Flame 139, (2004) 239-251.
[29] Y.H. Liao, W.L. Roberts, Laminar Flame Speeds of Gasoline Surrogates Measured with the Flat Flame Method, Energy Fuels 30, (2016) 1317-1324.
[30] H. Wei, D. Gao, L. Zhou, S. Petrakides, R. Chen, D. Feng, J. Pan, Experimental study on laminar flame characteristics of methanePRF95 dual fuel under lean burn conditions, Fuel (2016) 185, 254-262.
[31] S. Jerzembeck, N. Peters, P. Pepiot-Desjardins, H. Pitsch, Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation, Combust. Flame 156 (2009) 292–301.
[32] C. Cardin, B. Renou, G. Cabot, A.M. Boukhalfa, Experimental analysis of laser-induced spark ignition of lean turbulent premixed flames: New insight into ignition transition, Combust. Flame 160 (2013) 1414-1427.
[33] J.C. Steiner, W. Mirsky, Experimental determination of the dependence of the minimum spark ignition energy upon the rate of energy release, SAE Transactions 75 (1967) 392-407.
[34] Y. Ko, R.W. Anderson, V.S. Arpaci, Spark Ignition of Propane-Air Mixtures Near the Minimum Ignition Energy: Part I. An Experimental Study, Combust. Flame 83 (1991) 75-87.
[35] M. Kono, K. Hatori, K. Iinuma, Investigation on ignition ability of composite sparks in flowing mixtures, Symp. Combust. 20 (1985) 133-140.
[36] B. Lewis, G. von Elbe, Combustion, Flame and Explosions of Gases, Academic Press, London (1987).
[37] J. Moorhouse, A. Willams, T. Maddison, An investigation of the minimum ignition energies of some C1 to C7 hydrocarbons, Combust. Flame 23 (1974) 203-213.
[38] T.W. Lee, V. Jain, S. Kozala, Measurement of minimum ignition energy by using laser sparks for hydrocarbon fuels in air: propane, dodecane, and jet-A fuel, Combust. Flame 125 (2001) 1320-1328.
[39] G. Cui, W. Zeng, Z. Li, Y. Fu, H. Li, J. Chen, Experimental study of minimum ignition energy of methane/air mixtures at elevated temperatures and pressure, Fuel 175 (2016) 257-263.
[40] P.D. Ronney, Laser versus conventional ignition of flames, Opt. Eng. 33 (1994) 510-521.
[41] M. Kono, S. Kumagai, T. Sakai, The optimum condition for ignition of gases by composite sparks, Symp. Combust. 16 (1977) 757-766.
[42] D.R. Ballal, A.H. Lefebvre, The influence of spark discharge characteristics on minimum ignition energy in flowing gases, Combust. Flame 24 (1975) 99-108.
[43] J. Han, H. Yamashita, N. Hayashi, Numerical study on the spark ignition characteristics of a methane–air mixture using detailed chemical kinetics: Effect of equivalence ratio, electrode gap distance, and electrode radius on MIE, quenching distance, and ignition delay, Combust Flame 157 (2010) 1414-1421.
[44] H. Matsui, J.H. Lee, Influence of electrode geometry and spacing on the critical energy for direct initiation of spherical gaseous detonations, Combust. Flame 27 (1976) 217-220.
[45] D.R. Ballal, A.H. Lefebvre, The influence of flow parameters on minimum ignition energy and quenching distance, Symp. Combust. 15 (1975) 1473-148
[46] G.G. De Soete, The influence of isotropic turbulence on the critical ignition energy, Symp. Combust. 13 (1971) 735-743.
[47] T. Horstmann, W. Leuckel, B. Maurer, U. Mass, Influence of turbulent flow conditions on the ignition of flammable gas/air‐mixtures, Process Saf. Prog. 20 (2001) 215-224.
[48] R. Borghi, On the structure and morphology of turbulent premixed flames, Recent Advances in the Aerospace Sciences, Ed. C. Casci, (1985) 117-138, New York, Plenum.
[49] N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge (2000).
[50] V. Kurdyumov. J. Blasco, A.L. Sanchez, A. Lian, On the Calculation of the Minimum Ignition Energy, Combust. Flame 136 (2004) 394-397.
[51] C.T. d’Auzay, V. Papapostolou, S.F. Ahmed, N. Chakraborty, On the minimum ignition energy and its transition in the localised forced ignition of turbulent homogeneous mixtures, Combust. Flame 201 (2019) 104-117.
[52] S.S. Shy, W.J. Lin, J.C. Wei, An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion, Proc. R. Soc. Lond. A. 456 (2000) 1997-2019.
[53] S.S. Shy, W.J. Lin, K.Z. Peng, High-intensity turbulent premixed combustion: General correlations of turbulent burning velocities in a new cruciform burner, Proc. Combust. Inst. 28 (2000) 561-568.
[54] T.S. Yang, S.S. Shy, Two-way interaction between solid particles and homogeneous air turbulence: Particle settling rate and turbulence modification measurements, J. Fluid Mech. 526 (2005) 171-216.