跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林家慶
Jia-Ching Lin
論文名稱: 雙模態寬阻帶之基板合成波導濾波器
Dual-mode Wide Stopband Substrate Integrated Waveguide Filter
指導教授: 凃文化
Wen-Hua Tu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 81
中文關鍵詞: 基板合成波導濾波器寬阻帶雙模態
外文關鍵詞: Substrate Integrated Waveguide, Filter, Wide Stopband, Dual-mode
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究一種使用基板合成波導(Substrate Integrated Waveguide)的三階雙工器(Diplexer),雙模態共振腔的正交〖TE〗_102以及〖TE〗_201模態可以實現雙通道的傳輸,使不同中心頻率和比例頻寬的帶通濾波器能合併成一個,雙模共振腔以及腔體之間的耦合可以獨立控制,使得在中心頻率的選擇和比例頻寬的調整提供設計上的靈活度。
    第一個電路在使用兩個雙模腔體和兩個單模的腔體所組成,中心頻率為12GHz和14GHz,3dB比例頻寬分別是5%和4.4%,基於雙模腔體互相正交的特性,調整輸入/輸出端口的饋入線長度寬度和調整雙模腔體和單模腔體之間的耦合窗位置,可以有效控制比例頻寬和抑制高階的模態,因此可以實現雙模SIW雙工器。
    第二個電路為調整三階基板合成波導雙工器中的單模共振腔,藉由矩形波導截止頻率公式可以得知腔體寬長比、頻率比和模態發生順序的關係,設置耦合窗口在腔體中心以及諧波交錯,使通帶外的抑制效果更好,透過將輸出端口放置在電場最弱的地方可以達到一定的隔離度實現寬阻帶雙模SIW雙工器。
    第三個電路為三階基板合成波導雙頻帶濾波器,使用與第二片相同的設計方法,耦合窗口以及透過腔體長寬比,諧波交錯這兩種方法,可以實現寬阻帶SIW雙頻帶濾波器。


    This thesis introduces a substrate integrated waveguide (SIW) third-order diplexer. The orthogonal modes of 〖TE〗_102 and 〖TE〗_201 in a dual-mode cavity are exploited to realize the dual channel transmission. Two third-order SIW filter with different central frequencies and fractional bandwidths are synthesized and designed. both the central frequencies and fractional bandwidths of the two channels can be designed flexibly and independently by controlling the resonant frequencies and mutual couplings of cavities, especially dual-mode cavity.
    The first circuit consists of two dual mode cavities and two single mode cavities. The central frequencies are 12 GHz and 14GHz, and the 3dB fractional bandwidth is 5% and 4.4%, respectively. Based on the properties of these orthogonal dual mode cavities, adjusting the length and width of the feeding line at the input/output port and adjusting the position of the coupling window between the dual-mode cavity and the single-mode cavity can effectively control the fractional bandwidth and suppress higher-order modes. In addition, the position of the coupling window between the dual-mode resonator and the single-mode resonator could help spurious higher order modes. Thus, a dual-mode SIW duplexer can be implemented.
    The second circuit uses rectangular single mode cavity to replace the first one's square cavity. The relationship between the cavity W/L, the frequency ratio and mode occurrence sequence can be known by the cut-off frequency formula of rectangular waveguide. The coupling window is set at the center of the cavity and use the harmonics staggered to suppress the performance of outside the passband. Wide stopband dual mode SIW diplexer can be realize
    The third circuit is a wide stopband third-order SIW dual-band filter, designed using the same method as the second one. In addition, by two kinds of suppression techniques, the harmonic staggered technique and centered coupling windows, wide stopband SIW dual-band filter can be achieved.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 v 表目錄 viii 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 2 1-3 論文架構 3 第二章 基板合成波導帶通濾波器 4 2-1 帶通濾波器的基本設計原理 4 2-2 基板合成波導 14 第三章 運用基板合成波導設計雙工器 18 3-1 雙工器基本原理及架構 18 3-2 三階基板合成波導帶通濾波器設計 25 3-3 三階基板合成波導雙工器模擬及量測 35 第四章 寬阻帶雙模基板合成波導濾波器 47 4-1 寬長比對SIW模態影響 47 4-2 三階寬阻帶基板合成波導雙工器 49 4-3 三階寬阻帶SIW雙頻帶帶通濾波器 57 第五章 結論 62 參考文獻 64

    [1] P. Chu, L. Guo, L. Zhang, F. Xu, W. Hong, and K. Wu, "Wide Stopband Substrate Integrated Waveguide Filter Implemented by Orthogonal Ports’ Offset," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 3, pp. 964-970, 2020, doi: 10.1109/TMTT.2019.2947894.
    [2] X. Chen, K. Wu, and D. Drolet, "Substrate Integrated Waveguide Filter With Improved Stopband Performance for Satellite Ground Terminal," IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 3, pp. 674-683, 2009, doi: 10.1109/TMTT.2009.2013316.
    [3] P. Chu et al., "Dual-Mode Substrate Integrated Waveguide Filter With Flexible Response," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 3, pp. 824-830, 2017, doi: 10.1109/TMTT.2016.2633346.
    [4] H. J. Tang, W. Hong, J. Chen, G. Q. Luo, and K. Wu, "Development of Millimeter-Wave Planar Diplexers Based on Complementary Characters of Dual-Mode Substrate Integrated Waveguide Filters With Circular and Elliptic Cavities," IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 4, pp. 776-782, 2007, doi: 10.1109/TMTT.2007.893655.
    [5] K. Song, Y. Zhou, Y. Chen, A. M. Iman, S. R. Patience, and Y. Fan, "High-Isolation Diplexer With High Frequency Selectivity Using Substrate Integrate Waveguide Dual-Mode Resonator," IEEE Access, vol. 7, pp. 116676-116683, 2019, doi: 10.1109/ACCESS.2019.2926121.
    [6] K. Zhou, C. X. Zhou, and W. Wu, "Compact SIW Diplexer With Flexibly Allocated Bandwidths Using Common Dual-Mode Cavities," IEEE Microwave and Wireless Components Letters, vol. 28, no. 4, pp. 317-319, 2018, doi: 10.1109/LMWC.2018.2805881.
    [7] K. Zhou, C. Zhou, and W. Wu, "Compact planar substrate-integrated waveguide diplexers with wide-stopband characteristics," International Journal of RF and Microwave Computer-Aided Engineering, vol. 30, no. 6, p. e22179, 2020/06/01 2020.
    [8] K. Zhou and K. Wu, "Miniaturized Diplexer Using Dual Half-Mode SIW Cavity for 5G Sub-6 GHz Communications This paper is dedicated to the Memory of Professor Mojgan Daneshmand and her family," in 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 5-10 July 2020 2020, pp. 1821-1822, doi: 10.1109/IEEECONF35879.2020.9330295.
    [9] S. Han, K. Zhou, J. Zhang, C. Zhou, and W. Wu, "Novel Substrate Integrated Waveguide Filtering Crossover Using Orthogonal Degenerate Modes," IEEE Microwave and Wireless Components Letters, vol. 27, no. 9, pp. 803-805, 2017, doi: 10.1109/LMWC.2017.2734842.
    [10] K. Zhou and K. Wu, "Wide-Stopband Substrate-Integrated Waveguide Filtering Crossovers With Flexibly Allocated Channel Frequencies and Bandwidths," IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 7, pp. 3264-3274, 2021, doi: 10.1109/TMTT.2021.3067886.
    [11] H. Uchimura, T. Takenoshita, and M. Fujii, "Development of a "laminated waveguide"," IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 12, pp. 2438-2443, 1998, doi: 10.1109/22.739232.
    [12] D. Deslandes and K. Wu, "Single-substrate integration technique of planar circuits and waveguide filters," IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 2, pp. 593-596, 2003, doi: 10.1109/TMTT.2002.807820.
    [13] D. Deslandes and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microwave and Wireless Components Letters, vol. 11, no. 2, pp. 68-70, 2001, doi: 10.1109/7260.914305.
    [14] D. Deslandes and K. Wu, "Integrated transition of coplanar to rectangular waveguides," in 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157), 20-24 May 2001 2001, vol. 2, pp. 619-622 vol.2, doi: 10.1109/MWSYM.2001.966971.
    [15] D. M. Pozar, Microwave engineering. Fourth edition. Hoboken, NJ : Wiley, [2012] ©2012, 2012.
    [16] X. Feng and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 1, pp. 66-73, 2005, doi: 10.1109/TMTT.2004.839303.
    [17] K. Zhou, C. X. Zhou, and W. Wu, "Substrate-Integrated Waveguide Dual-Band Filters With Closely Spaced Passbands and Flexibly Allocated Bandwidths," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 8, no. 3, pp. 465-472, 2018, doi: 10.1109/TCPMT.2018.2793855.
    [18] K. Zhou, C. X. Zhou, and W. Wu, "Resonance Characteristics of Substrate-Integrated Rectangular Cavity and Their Applications to Dual-Band and Wide-Stopband Bandpass Filters Design," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 5, pp. 1511-1524, 2017, doi: 10.1109/TMTT.2016.2645156.
    [19] A. Iqbal, J. J. Tiang, C. K. Lee, and B. M. Lee, "Tunable Substrate Integrated Waveguide Diplexer With High Isolation and Wide Stopband," IEEE Microwave and Wireless Components Letters, vol. 29, no. 7, pp. 456-458, 2019, doi: 10.1109/LMWC.2019.2916609.
    [20] Z. L. Su, B. W. Xu, S. Y. Zheng, H. W. Liu, and Y. L. Long, "High-Isolation and Wide-Stopband SIW Diplexer Using Mixed Electric and Magnetic Coupling," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 1, pp. 32-36, 2020, doi: 10.1109/TCSII.2019.2903388.
    [21] F. Cheng, X. Lin, K. Song, Y. Jiang, and Y. Fan, "Compact Diplexer With High Isolation Using the Dual-Mode Substrate Integrated Waveguide Resonator," IEEE Microwave and Wireless Components Letters, vol. 23, no. 9, pp. 459-461, 2013, doi: 10.1109/LMWC.2013.2274036.
    [22] I. Llamas-Garro, F. Mira, P. Zheng, Z. Liu, L.-S. Wu, and Y. Wang, "All-resonator based LTCC diplexer using substrate-integrated-waveguides," Electronics Letters, vol. 53, no. 21, pp. 1410-1412, 2017/10/01 2017.
    [23] H. Chu, Y. Guo, Y. L. Song, and Z. L. Wang, "40/50 GHz diplexer design in LTCC technology," Electronics Letters, vol. 47, pp. 260-262, 03/17 2011, doi: 10.1049/el.2010.3644.
    [24] Z. Kordiboroujeni and J. Bornemann, "Substrate integrated waveguide diplexer with dual-mode junction cavity," in 2015 European Microwave Conference (EuMC), 7-10 Sept. 2015 2015, pp. 753-756, doi: 10.1109/EuMC.2015.7345873.
    [25] K. Zhou, C. Zhou, and W. Wu, "Substrate integrated waveguide dual-band filter with wide-stopband performance," Electronics Letters, vol. 53, no. 16, pp. 1121-1123, 2017/08/01 2017.
    [26] H. W. Xie, K. Zhou, C. X. Zhou, and W. Wu, "Compact SIW Diplexers and Dual-Band Bandpass Filter With Wide-Stopband Performances," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 2933-2937, 2020, doi: 10.1109/TCSII.2020.2992059.
    [27] V. Sekar and K. Entesari, "A novel compact dual-band half-mode substrate integrated waveguide bandpass filter," in 2011 IEEE MTT-S International Microwave Symposium, 5-10 June 2011 2011, pp. 1-4, doi: 10.1109/MWSYM.2011.5972733.
    [28] M. Ma et al., "A Wide Stopband Dual-Band Bandpass Filter Based on Asymmetrical Parallel-Coupled Transmission Line Resonator," IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 6, pp. 3213-3223, 2022, doi: 10.1109/TMTT.2022.3168024.
    [29] J. Tang, H. Liu, and Y. Yang, "Balanced Dual-Band Superconducting Filter Using Stepped-Impedance Resonators With High Band-to-Band Isolation and Wide Stopband," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 1, pp. 131-135, 2021, doi: 10.1109/TCSII.2020.3001258.
    [30] Y. Shen, H. Wang, W. Kang, and W. Wu, "Dual-Band SIW Differential Bandpass Filter With Improved Common-Mode Suppression," IEEE Microwave and Wireless Components Letters, vol. 25, no. 2, pp. 100-102, 2015, doi: 10.1109/LMWC.2014.2382683.

    QR CODE
    :::