| 研究生: |
陳仲緯 Jun-wei Chen |
|---|---|
| 論文名稱: |
二段陽極處理法應用於鈦薄膜成長之研究 The application of 2-step anodization in Ti thin film growth |
| 指導教授: |
陳志臣
Jyh-chen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 陽極處理 、薄膜 、二氧化鈦奈米管 |
| 外文關鍵詞: | anodization, TiO2 nanotube, film |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化鈦奈米管陣列具有較大比表面積、穩定物理與化學性質,可應用在光電化學產氫、染料敏化太陽能電池與光觸媒等領域。薄膜製程可依照不同用途,將金屬鍍在不同基板製備出微小元件使應用範圍更函寬廣。本實驗採用射頻濺鍍系統,將鈦薄膜濺鍍於FTO導電玻璃上,放置含有0.25 wt.%氟化銨、3 vol.%水與乙二醇之油性電解液中,固定陽極處理時間改變不同電壓與固定電壓改變不同陽極處理時間,觀察超音波震盪後圖案層(pattern)表面形態變化;而不同超音波震盪頻率對試片會產生不同破壞,導致試片內部殘留應力使試片產生應力腐蝕,應力腐蝕會使二氧化鈦奈米管表面產生裂痕,降低光吸收,導致光電流下降。本研究將超音波震盪頻率提升至110KHz以上,以陽極處理製備出結晶性較佳二氧化鈦奈米管陣列。
The TiO2 nanotube arrays have large surface area, high chemical and physical stability, which are important for many applications such as photo-electrochemical hydrogen generation, dye-sensitized solar cell and catalyst field. According to the different applications, Ti metal will be deposited on different substrates to fabricate micro device to extend application potential of thin film. In this study, we used Radio Frequency (RF) magnetic sputter system to deposit Ti thin film on Fluorine-doped tin oxide (FTO) glass and then anodized in 0.25 wt.%NH4F, 3 vol.%water and ethylene glycol ( EG ) electrolyte solution. We can observe the pattern morphologies due to change of different anodization voltage and anodization time. Different ultrasonic frequency destroyed sample, inducing residual stress to make Stress Corrosion Cracking ( SCC ) begin, which causing absorption and photocurrent of TiO2 nanotube arrays decrease. When the ultrasonic frequency increase above 110KHz, the result showed that the better crystallinity TiO2 nanotube structure have been grown.
1. A. Fujishma, A. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, 238 (1972) 37-38.
2. G.K. Mor, H.E. Prakasam, O.K. Varghese, K. Shankar, C.A. Grimes, “Vertically oriented Ti-Fe-O nanotube array films:toward a useful material architecture for solar spectrum water photoelectrolysis”, Nano Letters, 7 (2007) 2356-2364.
3. Y. Liu, H. Zhou, B. Zhou, J. Li, H. Chen, J. Wang, J. Bai, W. Shangguan, W. Cai, “Highly stable CdS-modified short TiO2 nanotube array electrode for efficient visible-light hydrogen generation”, International Journal of Hydrogen Energy, 36 (2011) 167-174.
4. Z. Zhang, Y. Yuan, L. Liang, Y. Cheng, G. Shi, L. Jin, “Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO2 nanotube arrays electrode for azo dye degradation”, Journal of Hazardous Materials, 158 (2008) 517-522.
5. S.A.K. Leghari, S. Sajjad, F. Chen, J. Zhang, “WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst”, Chemical Engineering Journal, 166 (2011) 906-915.
6. J. Gong, Y. Lai, C. Lin, “Electrochemically multi-anodized TiO2 nanotube arrays for enhancing hydrogen generation by photoelectrocatalytic water splitting”, Electrochimica Acta, 55 (2010) 4776-4782.
64
7. K.S. Raja, V.K. Mahajan, M. Misra, “Determination of photo conversion efficiency of nanotubular titanium”, Journal of Power Sources, 159 (2006) 1258-1265.
8. Phase diagram for ceramists figure 4150~4999, The American Ceramic Society, Inc. 76 (1975).
9. 陳仁智,「含二氧化鈦光觸媒之粒狀活性碳在液固流體化床內去除酸性染料之研究」,大同大學化學工程研究所,碩士論文,民國93年。
10. V. Zwilling, M. Aucouturier, E. Darque-Ceretti, “Anodic oxidation of titanium and TA6V alloy in chromic media:An electrochemical approach”, Electrochimica Acta, 45 (1999) 921-9329.
11. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, “Titanium oxide nanotube arrays prepare by anodic oxidation”, Material Research Society, 16 (2001) 3331-3334.
12. D.J. Yang, H.G. Kim, S.J. Cho, W.Y. Choi, “Vertically oriented titania nanotubes prepared by anodic oxidation on Si substrates”, IEEE Transactions on Nanotechnology, 7 (2008) 131-134.
13. G.K. Mor, O.K. Varghese, “Fabrication of tapered conical-shaped titania nanotubes”, Journal of Materials Research, 18 (2003) 2588-2593.
14. 胡啟章,電化學原理與方法,初版,五南書局,民國91年。
15. 王介光,「溫度不敏感性之電動力學行為於毛細管區域電泳」,國立中央大學化學工程與材料工程研究所,碩士論文,民國93年。
16. L. Huang, F. Peng, H. Yu, H. Wang, J. Yang, Z. Li, “The influence of
65
ultrasound on the formation of TiO2 nanotube arrays”, Materials Research Bulletin, 45 (2010) 200-204.
17. S.H. Kang, J.Y. Kim, H.S. Kim, Y.E. Sung, “Formation and mechanistic study of self-ordered TiO2 nanotubes on Ti substrate”, Journal of Industrial and Engineering Chemistry, 14 (2008) 52-59.
18. M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, C.A. Grimes, “Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length”, Journal of Chemical Physics B, 110 (2008) 16179-16184.
19. A. Valota, D.J. LeClerea, P. Skeldon, M. Curioni, T. Hashimoto, S. Berger, J. Kunze, P. Schmukib, G.E. Thompson, “Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes”, Electrochimica Acta, 54 (2009) 4321-4327.
20. J.H. Yuan, F.Y. He, D.C. Sun, X.H. Xia, “A simple method for preparation of through-hole porous anodic alumina membrane”, Chem. Mater, 16 (2004) 1841-1844.
21. Y. Yang, X. Wang, L. Li, “Synthesis and growth mechanism of graded TiO2 nanotube arrays by two-step anodization”, Materials Science and Engineering B, 149 (2008) 58-62.
22. Y. Shin, S. Lee, “Self-organized regular arrrays of Anodic TiO2 nanotube”, Nano Lett, 8 (2008) 3171-3173.
23. S. Li, G. Zhang, D. Guo, L. Yu, W. Zhan, “Anodization fabrication of highly ordered TiO2 nanotubes”, J. Phys. Chem. C, 113 (2009)
66
12759-12765.
24. Z. Zhang, M.F. Hossain, T. Takahashi, “Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation”, International Journal of Hydrogen Energy, 35 (2010) 8528-8535.
25. G.K. Mor, O.K. Varghese, M. Paulose, C.A. Grimes, “Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films”, Advanced Functional Materials, 15 (2005) 1291-1296.
26. D.J. Yang, H.G. Kim, S.J. Cho, W.Y. Choi, “Thickness-conversion ratio from titanium to TiO2 nanotube fabricated by anodization method”, Materials Letters, 62 (2008) 775-779.
27. A.Z. Sadek, H. Zheng, K. Latham, W. Wlodarski, “Anodization of Ti thin film deposited on ITO”, Langmuir, 25 (2009) 509-514.
28. 魏敏芝,「以陽極處理法生長二氧化鈦奈米管於玻璃基板上之研究」,國立中央大學能源工程研究所,碩士論文,民國98年。
29. http://www.dr-filmsonline.com/AboutUs3.aspx.
30. A. Valota, D.J. LeClere, T. Hashimoto, P. Skeldon, G.E. Thompson, S. Berger, J. Kunze, P. Schmuki, “The efficiency of nanotube formation on titanium anodized under voltage and current control in fluoride/glycerol electrolyte”, Nanotechnology, 19 (2008) 335701-335707.
31. M.Z. Hu, P. Lai, M.S. Bhuiyan, C. Tsouris, B. Gu, M.P. Paranthaman, J. Gabitto, L. Harrison, “Synthesis and characterization of anodized titanium-oxide nanotube arrays”, Journal of Materials Science, 44 (2009) 2820-2827.
67
32. H. Yang, C. Pan, “Diameter-controlled growth of TiO2 nanotube arrays by anodization and its photoelectric property”, Journal of Alloys and Compounds, 492 (2010) 33-35.
33. J. Lin, J. Chen, X. Chen, “Facile fabrication of free-standing TiO2 nanotube membranes with both ends open via self-detaching anodization”, Electrochemistry Communications, 12 (2010) 1062-1065.
34. S. Majumdar, P.S. Kumar, A.B. Pandit, “Effect of liquid-phase properties on ultrasonic intensity and cavitational activity”, Ultrason. Sonochem, 5 (1998) 113-118.
35. 陳永增「超音波空泡破壞應用在鋁合金氧化膜診斷上之研究」,國立中央大學機械工程研究所,博士論文,民國93年。
36. 鮮棋振,金屬腐蝕膜特性探討,初版,台北,徐氏基金會出版。