跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳育慧
Yu-Huei Wu
論文名稱: 度規仿射重力理論中的準局域能量-動量
Quasilocal energy-momentumin Metric Affine Gravity
指導教授: 聶斯特
James M. Nester
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 89
語文別: 中文
論文頁數: 66
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 動量。MAG 理論的動機就是為了找出一重力的規範理論進一步邁向量子重力場,
    我們意在結合MAG 理論與準局域表示式以得到經確解更多的資訊和進一步了解
    準局域表示式的物理意義。利用Reduce 我們找到在MAG 理論中的準局域能量
    其極限值為ADM 質量。



    expressions for some exact solutions of the Metric-Affine gravity theory. The
    motivation for the MAG theory is to formulate a gauge theory of gravity moving
    towards a quantum gravity. Our intention in combining MAG and quasilocal quantities
    is to both compare the results of several exact solutions in order to better understand
    them and to further see the physical meaning of these quasilocal expressions. Using
    Reduce, we found quasilocal values with reasonable asymptotic limits for these MAG
    theory solutions.

    Contents Ⅰ List of Tables Ⅲ List of Graphs Ⅳ 1 Introduction 3 1.1 Introduction and outline … … … … … … … ..… … … … ..3 1.2 Why MAG theory… … … … … … … … … … ..… … … … .6 1.3 Gravitational energy-momentum… … … … ..… … … … ..9 2 Metric-Affine Gravity 10 2.1 MAG geometry framework… … … … … … … … … … ...10 2.2 Lagrange-Noether Machinery… … … … … … … … … ...12 2.3 Field equations… … … … … … … … … … … … … … … ..20 2.4 The quadratic gauge Lagrangian of the MAG… … … ..21 2.5 Some exact solutions for the MAG theory… … … … ...23 3 Hamiltonian approach 28 3.1 Covariant Hamiltonian formalism… … ...… … … … … ..28 3.2 Expressions for quasilocal quantities… … … … … … … 31 II 4 Evaluation of energy-momentum for some exact solutions 34 4.1 Quasilocal energy-momentum for some exact solutions… … … … … … … … … … … .34 4.2 Discussion of the results… … … … … … … … … … … ..41 5 Discussion 47 Appendix A: Irreducible decompositions… … … … … … 51 Appendix B: Reduce programs… … … … … … … … … … 56 References 64

    [Ch] C. M. Chen and J. M. Nester, ”Quasilocal Energy-Momentum for Geometric
    Gravity Theories”, Class. Quantum Grav. 16 1279-304 (1999);
    gr-qc/9809020.
    [Ch1] C. M. Chen and J. M. Nester, “A symplectic Hamiltonian derivation of
    quasilocal energy-momentum for GR”, Gravitation & Cosmology 6 (2000)
    257-270; gr-qc/0001088.
    [De] 笛卡兒 (Descartes), “方法導論, 沉思錄, 哲學原理 (A Discourse on
    Method, Meditations and Principles of Philosophy) ”,譯者: 錢志純, 黎惟東;
    志文出版 民 73
    [Ch2] C. C Chang, J.M. Nester and C.M. Chen, “Pseudotensors and quasilocal
    energy-momentum”, Phys. Rev. Lett. 83 1897-901 (1999); gr-qc/9809040.
    [Gr] F. Gronwald: “Metric-Affine Gauge Theory of Gravity, I. Fundamental
    Structure and Field Equations”. Int. J. Mod. Phys. D6 (1997) 263-303. Los
    Alamos E-Print Archive: gr-qc/9702034.
    [Hea] A. C. Hearn, “REDUCE User’s Manual”, Rand Publication CP78, The Rand
    Corporation, Santa Monica, CA 90406 (1985)
    [He] F.W. Hehl, J. D. McCrea, E, W. Mielke, and Y. Ne’eman: “Metric-Affine
    Gauge Theory of Gravity: Field Equations, Noether Identities, World Spinors,
    and Breaking of Dilation Invariance”, Phys.Rep. 258 (1995) 1.
    [He1] F.W. Hehl and A. Macías: “Metric-Affine Gauge Theory of Gravity, II. Exact
    solutions”, gr-qc/9902076 v2
    [Ho] J. K. Ho, De-Ching Chern, and J. M. Nester: “Some Spherically Symmetric
    65
    Exact Solutions of the Metric-Affine Gravity Theory”, Chinese J. of Phys. 35
    (1997) 640-650.
    J.K. Ho, ”Some spherically symmetric exact solutions of the Metric-Affine
    Gravity theory”, MSc. Thesis (National Central University, Chungli, 1996).
    [Ka] Immanuel Kant, “Critique of pure reason”.
    康德, 純粹理性批判 /牟宗三 譯註 台北市 :臺灣學生 民77
    [Lao] Lao-tse, “Tao Te Ching”. Translated by Charles Muller, 1991.
    生命中的大智慧----老子 /余培林撰
    台北市 : 時報文化出版公司, 民70
    [Le1] C.Y. Lee ,”Renormalization of quantum gravity with local GL(4,R) symmetry”,
    Class. Quantum Grav. 9 (1992) 2001
    [Le2] C.Y. Lee and Y.Ne’eman: “Renormalization of gauge-affine gravity”, Phys.
    Lett. B242 (1990) 59.
    [Le3] C.Y. Lee and Y.Ne’eman: “BRST transformations for an affine gauge model of
    gravity with local GL(4,R) symmetry”, Phys.Lett. B233 (1989) 286.
    [Ma] A. Macías, E. W. Mielke, J.Socorro: “Solitonic monopole solution in
    metric-affine gauge theory carrying Wely charges”, Class. Quantum Grav. 15
    (1998) 445-452
    [Ma1] A. Macías, J.Socorro: “Generalized Reissner-Nordström solution in
    metric-affine gravity”, Class. Quantum Grav. 16 (1999) 2323-2333
    [MTW] Misner C W, Thorne K S and Wheeler J A “Gravitation” (Freeman, San
    66
    Francis, 1973).
    [Ne] Y. Ne’eman and F.W. Hehl: “Test matter in a spacetime with nonmetricity”
    Class. Quantum Grav. 14 (1997) A251-A259.
    [Ob] Yu.N. Obukhov and R. Tresguerres, “Hyperfluid- a model of classical matter
    with hypermomentum”, Phys. Lett. A184 (1993) 17-22.
    [Pe] R. Penrose, “The emperor’s new mind concerning computers, mind, and the
    laws of physics”, Oxford New York: Oxford University Press, 1989.
    [Tr] R. Tresguerres: “Exact vacuum solutions of 4-dimensional metric-affine gauge
    theories of gravitation”, Z. Phys. C65 (1995) 347-354.
    [Tr1] R. Tresguerres: “Exact static vacuum solution of four-dimensional metric-affine
    gravity with nontrivial torsion”, Phys.Lett.A200 (1995) 405-410.
    [Vl] E.J.Vlachynsky, R. Tresguerres, Yu. N. Obukhov, F.W. Hehl: “An axially
    symmetric solution of metric-affine gravity”, Class. Quantum Grav. 13 (1996)
    3253-3259.

    QR CODE
    :::