| 研究生: |
吳育慧 Yu-Huei Wu |
|---|---|
| 論文名稱: |
度規仿射重力理論中的準局域能量-動量 Quasilocal energy-momentumin Metric Affine Gravity |
| 指導教授: |
聶斯特
James M. Nester |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
動量。MAG 理論的動機就是為了找出一重力的規範理論進一步邁向量子重力場,
我們意在結合MAG 理論與準局域表示式以得到經確解更多的資訊和進一步了解
準局域表示式的物理意義。利用Reduce 我們找到在MAG 理論中的準局域能量
其極限值為ADM 質量。
expressions for some exact solutions of the Metric-Affine gravity theory. The
motivation for the MAG theory is to formulate a gauge theory of gravity moving
towards a quantum gravity. Our intention in combining MAG and quasilocal quantities
is to both compare the results of several exact solutions in order to better understand
them and to further see the physical meaning of these quasilocal expressions. Using
Reduce, we found quasilocal values with reasonable asymptotic limits for these MAG
theory solutions.
[Ch] C. M. Chen and J. M. Nester, ”Quasilocal Energy-Momentum for Geometric
Gravity Theories”, Class. Quantum Grav. 16 1279-304 (1999);
gr-qc/9809020.
[Ch1] C. M. Chen and J. M. Nester, “A symplectic Hamiltonian derivation of
quasilocal energy-momentum for GR”, Gravitation & Cosmology 6 (2000)
257-270; gr-qc/0001088.
[De] 笛卡兒 (Descartes), “方法導論, 沉思錄, 哲學原理 (A Discourse on
Method, Meditations and Principles of Philosophy) ”,譯者: 錢志純, 黎惟東;
志文出版 民 73
[Ch2] C. C Chang, J.M. Nester and C.M. Chen, “Pseudotensors and quasilocal
energy-momentum”, Phys. Rev. Lett. 83 1897-901 (1999); gr-qc/9809040.
[Gr] F. Gronwald: “Metric-Affine Gauge Theory of Gravity, I. Fundamental
Structure and Field Equations”. Int. J. Mod. Phys. D6 (1997) 263-303. Los
Alamos E-Print Archive: gr-qc/9702034.
[Hea] A. C. Hearn, “REDUCE User’s Manual”, Rand Publication CP78, The Rand
Corporation, Santa Monica, CA 90406 (1985)
[He] F.W. Hehl, J. D. McCrea, E, W. Mielke, and Y. Ne’eman: “Metric-Affine
Gauge Theory of Gravity: Field Equations, Noether Identities, World Spinors,
and Breaking of Dilation Invariance”, Phys.Rep. 258 (1995) 1.
[He1] F.W. Hehl and A. Macías: “Metric-Affine Gauge Theory of Gravity, II. Exact
solutions”, gr-qc/9902076 v2
[Ho] J. K. Ho, De-Ching Chern, and J. M. Nester: “Some Spherically Symmetric
65
Exact Solutions of the Metric-Affine Gravity Theory”, Chinese J. of Phys. 35
(1997) 640-650.
J.K. Ho, ”Some spherically symmetric exact solutions of the Metric-Affine
Gravity theory”, MSc. Thesis (National Central University, Chungli, 1996).
[Ka] Immanuel Kant, “Critique of pure reason”.
康德, 純粹理性批判 /牟宗三 譯註 台北市 :臺灣學生 民77
[Lao] Lao-tse, “Tao Te Ching”. Translated by Charles Muller, 1991.
生命中的大智慧----老子 /余培林撰
台北市 : 時報文化出版公司, 民70
[Le1] C.Y. Lee ,”Renormalization of quantum gravity with local GL(4,R) symmetry”,
Class. Quantum Grav. 9 (1992) 2001
[Le2] C.Y. Lee and Y.Ne’eman: “Renormalization of gauge-affine gravity”, Phys.
Lett. B242 (1990) 59.
[Le3] C.Y. Lee and Y.Ne’eman: “BRST transformations for an affine gauge model of
gravity with local GL(4,R) symmetry”, Phys.Lett. B233 (1989) 286.
[Ma] A. Macías, E. W. Mielke, J.Socorro: “Solitonic monopole solution in
metric-affine gauge theory carrying Wely charges”, Class. Quantum Grav. 15
(1998) 445-452
[Ma1] A. Macías, J.Socorro: “Generalized Reissner-Nordström solution in
metric-affine gravity”, Class. Quantum Grav. 16 (1999) 2323-2333
[MTW] Misner C W, Thorne K S and Wheeler J A “Gravitation” (Freeman, San
66
Francis, 1973).
[Ne] Y. Ne’eman and F.W. Hehl: “Test matter in a spacetime with nonmetricity”
Class. Quantum Grav. 14 (1997) A251-A259.
[Ob] Yu.N. Obukhov and R. Tresguerres, “Hyperfluid- a model of classical matter
with hypermomentum”, Phys. Lett. A184 (1993) 17-22.
[Pe] R. Penrose, “The emperor’s new mind concerning computers, mind, and the
laws of physics”, Oxford New York: Oxford University Press, 1989.
[Tr] R. Tresguerres: “Exact vacuum solutions of 4-dimensional metric-affine gauge
theories of gravitation”, Z. Phys. C65 (1995) 347-354.
[Tr1] R. Tresguerres: “Exact static vacuum solution of four-dimensional metric-affine
gravity with nontrivial torsion”, Phys.Lett.A200 (1995) 405-410.
[Vl] E.J.Vlachynsky, R. Tresguerres, Yu. N. Obukhov, F.W. Hehl: “An axially
symmetric solution of metric-affine gravity”, Class. Quantum Grav. 13 (1996)
3253-3259.