| 研究生: |
吳采羚 Tsai-Ling Wu |
|---|---|
| 論文名稱: |
硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究 Synthesis and Characterization of SnS2 Anode Material for Li ion battery |
| 指導教授: |
李岱洲
Tai-Chou Lee 張仍奎 Jeng-Kuei Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 硫化錫 、鋰離子電池 、水熱法 、溶劑熱法 |
| 外文關鍵詞: | Tin Sulfide, lithium-ion batteries, hydrothermal, solvothermal |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗中藉由水熱法以及溶劑熱法,改變反應溶劑製備出具有不同表面形貌之SnS2粉體,由乙二醇以及水所製備出的粉體均為奈米結構組成的聚集體,而使用乙醇所製備出的粉體是由厚度約60-70 nm的奈米盤所組成之3D層狀微米結構。相較於前面兩種粉末(乙二醇以及水) ,此種微米結構能有效舒緩鋰離子嵌入-嵌出過程中,所產生的巨大體積膨脹。於300 mA/g (0.47 C) 的定電流下,反覆充放電100圈後,仍可提供414 mAh/g的可逆電容量,其維持率約為76 %。
使用乙醇做為反應溶劑,當反應溫度降至100 oC時,可有效的減少3D層狀結構之奈米盤的厚度,其厚度約為20-40 nm;不僅可以緩和鋰離子嵌入過程中所造成的體積膨脹且可降低內阻,改善在高速下的電化學性能;於300 mA/g (0.47 C) 的定電流下,反覆充放電100圈後,仍可提供460 mAh/g的可逆電容量,其維持率高達84 %以及在5000 mA/g (7.75 C) 的快充速度下,可提供285 mAh/g之可逆電容量。因此擁有3D層狀結構以及有效減少奈米盤的厚度,可有效提升SnS2之電化學性能。
As energy storage devices, lithium-ion batteries are extremely important power sources for various portable electronic devices and electric vehicles in modern society. Tin sulfide (SnS2) is low-cost, low toxicity, and high capacities (theoretical capacity:645 mAh/g), it has become one of the most promising anode materials to replace the already commercialized graphite (theoretical capacity:372 mAh/g) in the next generation of lithium ion batteries, and has attracted intensive research interest. Unfortunately, the main drawback of this system stems from the poor conductivity and a drastic pulverization problem due to the large volume change during the lithiation/delithiation process, leading to a high level of irreversibility (i.e, low columbic efficiency) and poor cycle life.
In this study, the different surface morphology of SnS2 powders is prepared by a simple hydrothermal and solvothermal route with different solvents. The powders which use ethylene glycol and DI water as solvent are nanostructures composed of aggregates. However, the powder which uses ethanol as solvent shows many 3D flowerlike microspheres with diameter of 1-2 μm that are composed of hundreds of nanosheets with thicknesses of 60¬-70 nm. Compared to previous two powders, the 3D flowerlike microspheres with hundreds of nanosheets can alleviate the volume change during the lithiation/delithiation process. At a constant current of 300 mA/g (0.47 C) , the 3D flowerlike microspheres exhibit reversible capacity of 414 mAh/g after 100 cycles with the retention of 76 %.
The powder which uses ethanol as solvent synthesized at 100 oC, can effectively reduce thickness of nanosheets with 20-40 nm. It not only can alleviate the volume change during the lithiation/delithiation process but also reduce the internal resistance, improving the electrochemical performance at high C-rate. At a constant current of 300 mA/g (0.47 C) , it exhibits reversible capacity of 460 mAh/g after 100 cycles with the retention of 84 %.And at a high constant current of 5000 mA/g (7.75 C) , it can provide the reversible capacity of 285 mAh/g. Therefore, both of the 3D flowerlike microspheres structure and a decrease of thickness can improve the electrochemical performance.
1. J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
2. C.M. Park, J.H. Kim, H. Kim, and H.J. Sohn, Li-alloy based anode materials for Li secondary batteries. Chemical Society Reviews, 2010. 39(8): p. 3115-3141.
3. M.S. Whittingham, Electrical Energy Storage and Intercalation Chemistry. Science, 1976. 192(4244): p. 1126-1127.
4. B.J. Landi, M.J. Ganter, C.D. Cress, R.A. Dileo, and R.P. Raffaelle, Carbon nanotubes for lithium ion batteries. Energy & Environmental Science, 2009. 2(6): p. 638-654.
5. B. Scrosati and J. Garche, Lithium batteries: Status, prospects and future. Journal of Power Sources, 2010. 195(9): p. 2419-2430.
6. L.X. Yuan, Z.H. Wang, W.X. Zhang, X.L. Hu, J.T. Chen, Y.H. Huang, and J.B. Goodenough, Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy & Environmental Science, 2011. 4(2): p. 269-284.
7. J.B. Goodenough and Y. Kim, Challenges for Rechargeable Li Batteries. Chemistry of Materials, 2010. 22(3): p. 587-603.
8. A. Manthiram, Materials Challenges and Opportunities of Lithium Ion Batteries. The Journal of Physical Chemistry Letters, 2011. 2(3): p. 176-184.
9. J.B. Goodenough, Rechargeable batteries: challenges old and new. Journal of Solid State Electrochemistry, 2012. 16(6): p. 2019-2029.
10. M.M. Thackeray Lithium-ion batteries: An unexpected conductor. Nature Materials, 2002. 1(2).
11. F.F.C. Bazito and R.M. Torresi, Cathodes for lithium ion batteries: the benefits of using nanostructured materials. Journal of the Brazilian Chemical Society, 2006. 17: p. 627-642.
12. K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough, LixCoO2 (0<x<1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
13. J. Cho, Y.J. Kim, and B. Park, Novel LiCoO2 Cathode Material with Al2O3 Coating for a Li Ion Cell. Chemistry of Materials, 2000. 12(12): p. 3788-3791.
14. A.M. Kannan, L. Rabenberg, and A. Manthiram, High Capacity Surface-Modified LiCoO2 Cathodes for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2003. 6(1): p. A16-A18.
15. M.M. Thackeray, W.I.F. David, P.G. Bruce, and J.B. Goodenough, Lithium insertion into manganese spinels. Materials Research Bulletin, 1983. 18(4): p. 461-472.
16. C. Li, H.P. Zhang, L.J. Fu, H. Liu, Y.P. Wu, E. Rahm, R. Holze, and H.Q. Wu, Cathode materials modified by surface coating for lithium ion batteries. Electrochimica Acta, 2006. 51(19): p. 3872-3883.
17. A. Yamada, S.C. Chung, and K. Hinokuma Optimized LiFePO4 for Lithium Battery Cathodes. Journal of The Electrochemical Society, 2001. 148(3): p. A224-A229.
18. J.W. Fergus, Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 2010. 195(4): p. 939-954.
19. 鄭程鴻, 楊家諭, 邱永城, 鋰離子二次電池電解質介紹. 工業材料, 1996. 110: p. 66-72.
20. 龔丹誠, 李治宏, 微孔隙隔離膜及其市場現況介紹. 工業材料, 2013. 324: p. 77-85.
21. M.V. Reddy, G.V. Subba Rao, and B.V.R. Chowdari, Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chemical Reviews, 2013. 113(7): p. 5364-5457.
22. M.R. Palacin, Recent advances in rechargeable battery materials: a chemist's perspective. Chemical Society Reviews, 2009. 38(9): p. 2565-2575.
23. K. Zaghib, G. Nadeau, and K. Kinoshita, Effect of Graphite Particle Size on Irreversible Capacity Loss. Journal of The Electrochemical Society, 2000. 147(6): p. 2110-2115.
24. J. Yao, G.X. Wang, J.H. Ahn, H.K. Liu, and S.X. Dou, Electrochemical studies of graphitized mesocarbon microbeads as an anode in lithium-ion cells. Journal of Power Sources, 2003. 114(2): p. 292-297.
25. I. Mochida, C.H. Ku, S.H. Yoon, and Y. Korai, Anodic performance and mechanism of mesophase-pitch-derived carbons in lithium ion batteries. Journal of Power Sources, 1998. 75(2): p. 214-222.
26. S.S. Zhang, K. Xu, and T.R. Jow, EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochimica Acta, 2006. 51(8–9): p. 1636-1640.
27. V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9): p. 3243-3262.
28. J. Vetter, P. Novák, M.R. Wagner, C. Veit, K.C. Möller, J.O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, and A. Hammouche, Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 2005. 147(1–2): p. 269-281.
29. H. Nakamura, H. Komatsu, and M. Yoshio, Suppression of electrochemical decomposition of propylene carbonate at a graphite anode in lithium-ion cells. Journal of Power Sources, 1996. 62(2): p. 219-222.
30. S.B. Lee and S.I. Pyun, Mechanism of lithium transport through an MCMB heat-treated at 800–1200 °C. Electrochimica Acta, 2002. 48(4): p. 419-430.
31. D.J.F. Ali Reza Kamali, TIN-BASED MATERIALS AS ADVANCED ANODE MATERIALS FOR LITHIUM ION BATTERIES: A REVIEW. Rev.Adv.Mater.Sci., 2011. 27: p. 14-24.
32. W.J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources, 2011. 196(1): p. 13-24.
33. Y. Gu, F. Wu, and Y. Wang, Confined Volume Change in Sn–Co–C Ternary Tube-in-Tube Composites for High-Capacity and Long-Life Lithium Storage. Advanced Functional Materials, 2013. 23(7): p. 893-899.
34. S.I. Lee, S. Yoon, C.M. Park, J.M. Lee, H. Kim, D. Im, S.G. Doo, and H.J. Sohn, Reaction mechanism and electrochemical characterization of a Sn–Co–C composite anode for Li-ion batteries. Electrochimica Acta, 2008. 54(2): p. 364-369.
35. J. Cabana, L. Monconduit, D. Larcher, and M.R. Palacín, Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Advanced Materials, 2010. 22(35): p. E170-E192.
36. P.G. Bruce, B. Scrosati, and J.M. Tarascon, Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie International Edition, 2008. 47(16): p. 2930-2946.
37. M.G. Kim and J. Cho, Reversible and High-Capacity Nanostructured Electrode Materials for Li-Ion Batteries. Advanced Functional Materials, 2009. 19(10): p. 1497-1514.
38. C. Xu, Y. Zeng, X. Rui, N. Xiao, J. Zhu, W. Zhang, J. Chen, W. Liu, H. Tan, H.H. Hng, and Q. Yan, Controlled Soft-Template Synthesis of Ultrathin C@FeS Nanosheets with High-Li-Storage Performance. ACS Nano, 2012. 6(6): p. 4713-4721.
39. H.S. Kim, Y.H. Chung, S.H. Kang, and Y.E. Sung, Electrochemical behavior of carbon-coated SnS2 for use as the anode in lithium-ion batteries. Electrochimica Acta, 2009. 54(13): p. 3606-3610.
40. J. Ma, D. Lei, L. Mei, X. Duan, Q. Li, T. Wang, and W. Zheng, Plate-like SnS2 nanostructures: Hydrothermal preparation, growth mechanism and excellent electrochemical properties. CrystEngComm, 2012. 14(3): p. 832-836.
41. J. Yin, H. Cao, Z. Zhou, J. Zhang, and M. Qu, SnS2@reduced graphene oxide nanocomposites as anode materials with high capacity for rechargeable lithium ion batteries. Journal of Materials Chemistry, 2012. 22(45): p. 23963-23970.
42. L. Zhuo, Y. Wu, L. Wang, Y. Yu, X. Zhang, and F. Zhao, One-step hydrothermal synthesis of SnS2/graphene composites as anode material for highly efficient rechargeable lithium ion batteries. RSC Advances, 2012. 2(12): p. 5084-5087.
43. L. Ji, H.L. Xin, T.R. Kuykendall, S.L. Wu, H. Zheng, M. Rao, E.J. Cairns, V. Battaglia, and Y. Zhang, SnS2 nanoparticle loaded graphene nanocomposites for superior energy storage. Physical Chemistry Chemical Physics, 2012. 14(19): p. 6981-6986.
44. M. Sathish, S. Mitani, T. Tomai, and I. Honma, Ultrathin SnS2 Nanoparticles on Graphene Nanosheets: Synthesis, Characterization, and Li-Ion Storage Applications. The Journal of Physical Chemistry C, 2012. 116(23): p. 12475-12481.
45. B. Luo, Y. Fang, B. Wang, J. Zhou, H. Song, and L. Zhi, Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage. Energy & Environmental Science, 2012. 5(1): p. 5226-5230.
46. K. Chang, Z. Wang, G. Huang, H. Li, W. Chen, and J.Y. Lee, Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode. Journal of Power Sources, 2012. 201(0): p. 259-266.
47. L. Mei, C. Xu, T. Yang, J. Ma, L. Chen, Q. Li, and T. Wang, Superior electrochemical performance of ultrasmall SnS2 nanocrystals decorated on flexible RGO in lithium-ion batteries. Journal of Materials Chemistry A, 2013. 1(30): p. 8658-8664.
48. S. Liu, X. Lu, J. Xie, G. Cao, T. Zhu, and X. Zhao, Preferential c-Axis Orientation of Ultrathin SnS2 Nanoplates on Graphene as High-Performance Anode for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2013. 5(5): p. 1588-1595.
49. H. Sun, M. Ahmad, J. Luo, Y. Shi, W. Shen, and J. Zhu, SnS2 nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries. Materials Research Bulletin, 2014. 49(0): p. 319-324.
50. Q. Wang, Y. Huang, J. Miao, Y. Zhao, and Y. Wang, Synthesis and electrochemical characterizations of Ce doped SnS2 anode materials for rechargeable lithium ion batteries. Electrochimica Acta, 2013. 93(0): p. 120-130.
51. M. Zhang, D. Lei, X. Yu, L. Chen, Q. Li, Y. Wang, T. Wang, and G. Cao, Graphene oxide oxidizes stannous ions to synthesize tin sulfide-graphene nanocomposites with small crystal size for high performance lithium ion batteries. Journal of Materials Chemistry, 2012. 22(43): p. 23091-23097.
52. Z. Jiang, C. Wang, G. Du, Y.J. Zhong, and J.Z. Jiang, In situ synthesis of SnS2@graphene nanocomposites for rechargeable lithium batteries. Journal of Materials Chemistry, 2012. 22(19): p. 9494-9496.
53. M. Sathish, S. Mitani, T. Tomai, A. Unemoto, and I. Honma, Nanocrystalline tin compounds/graphene nanocomposite electrodes as anode for lithium-ion battery. Journal of Solid State Electrochemistry, 2012. 16(5): p. 1767-1774.
54. C. Shen, L. Ma, M. Zheng, B. Zhao, D. Qiu, L. Pan, J. Cao, and Y. Shi, Synthesis and electrochemical properties of graphene-SnS2 nanocomposites for lithium-ion batteries. Journal of Solid State Electrochemistry, 2012. 16(5): p. 1999-2004.
55. C. Zhai, N. Du, H. Zhang, J. Yu, and D. Yang, Multiwalled Carbon Nanotubes Anchored with SnS2 Nanosheets as High-Performance Anode Materials of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2011. 3(10): p. 4067-4074.
56. J.G. Kang, G.H. Lee, K.S. Park, S.O. Kim, S. Lee, D.W. Kim, and J.G. Park, Three-dimensional hierarchical self-supported multi-walled carbon nanotubes/tin(iv) disulfide nanosheets heterostructure electrodes for high power Li ion batteries. Journal of Materials Chemistry, 2012. 22(18): p. 9330-9337.
57. Y. Du, Z. Yin, X. Rui, Z. Zeng, X.J. Wu, J. Liu, Y. Zhu, J. Zhu, X. Huang, Q. Yan, and H. Zhang, A facile, relative green, and inexpensive synthetic approach toward large-scale production of SnS2 nanoplates for high-performance lithium-ion batteries. Nanoscale, 2013. 5(4): p. 1456-1459.
58. M. He, L.X. Yuan, and Y.H. Huang, Acetylene black incorporated three-dimensional porous SnS2 nanoflowers with high performance for lithium storage. RSC Advances, 2013. 3(10): p. 3374-3383.
59. J. Li, P. Wu, F. Lou, P. Zhang, Y. Tang, Y. Zhou, and T. Lu, Mesoporous carbon anchored with SnS2 nanosheets as an advanced anode for lithium-ion batteries. Electrochimica Acta, 2013. 111(0): p. 862-868.
60. C. Zhai, N. Du, and H.Z.D. Yang, Large-scale synthesis of ultrathin hexagonal tin disulfide nanosheets with highly reversible lithium storage. Chemical Communications, 2011. 47(4): p. 1270-1272.
61. J. Zai, X. Qian, K. Wang, C. Yu, L. Tao, Y. Xiao, and J. Chen, 3D-hierarchical SnS2 micro/nano-structures: controlled synthesis, formation mechanism and lithium ion storage performances. CrystEngComm, 2012. 14(4): p. 1364-1375.
62. J. Wang, J. Liu, H. Xu, S. Ji, J. Wang, Y. Zhou, P. Hodgson, and Y. Li, Gram-scale and template-free synthesis of ultralong tin disulfide nanobelts and their lithium ion storage performances. Journal of Materials Chemistry A, 2013. 1(4): p. 1117-1122.
63. T.J. Kim, C. Kim, D. Son, M. Choi, and B. Park, Novel SnS2-nanosheet anodes for lithium-ion batteries. Journal of Power Sources, 2007. 167(2): p. 529-535.
64. J.W. Seo, J.T. Jang, S.W. Park, C. Kim, B. Park, and J. Cheon, Two-Dimensional SnS2 Nanoplates with Extraordinary High Discharge Capacity for Lithium Ion Batteries. Advanced Materials, 2008. 20(22): p. 4269-4273.
65. S. Liu, X. Yin, L. Chen, Q. Li, and T. Wang, Synthesis of self-assembled 3D flowerlike SnS2 nanostructures with enhanced lithium ion storage property. Solid State Sciences, 2010. 12(5): p. 712-718.
66. K. Chang, W.X. Chen, H. Li, and H. Li, Microwave-assisted synthesis of SnS2/SnO2 composites by l-cysteine and their electrochemical performances when used as anode materials of Li-ion batteries. Electrochimica Acta, 2011. 56(7): p. 2856-2861.
67. D. Lei, M. Zhang, B. Qu, J. Ma, Q. Li, L. Chen, B. Lu, and T. Wang, Hierarchical tin-based microspheres: Solvothermal synthesis, chemical conversion, mechanism and application in lithium ion batteries. Electrochimica Acta, 2013. 106(0): p. 386-391.
68. Y. Zou and Y. Wang, Microwave solvothermal synthesis of flower-like SnS2 and SnO2 nanostructures as high-rate anodes for lithium ion batteries. Chemical Engineering Journal, 2013. 229(0): p. 183-189.
69. Q. Wu, L. Jiao, J. Du, J. Yang, L. Guo, Y. Liu, Y. Wang, and H. Yuan, One-pot synthesis of three-dimensional SnS2 hierarchitectures as anode material for lithium-ion batteries. Journal of Power Sources, 2013. 239(0): p. 89-93.
70. L. Wang, L. Zhuo, Y. Yu, and F. Zhao, High-rate performance of SnS2 nanoplates without carbon-coating as anode material for lithium ion batteries. Electrochimica Acta, 2013. 112(0): p. 439-447.
71. 馬振基, 奈米材料科技原理與應用. 全華科技圖書股份有限公司, 2004: p. 4.31-4.36.
72. 戴明鳳, 羅吉宗, 林鴻明,鄭振宗,蘇程裕,吳育民, 奈米科技導論. 全華圖書股份有限公司, 2008: p. 3.48-3.50.
73. G. Zhu, P. Liu, J. Zhou, X. Bian, X. Wang, J. Li, and B. Chen, Effect of mixed solvent on the morphologies of nanostructured Bi2S3 prepared by solvothermal synthesis. Materials Letters, 2008. 62(15): p. 2335-2338.
74. S. Brunauer, L.S. Deming, W.E. Deming, and E. Teller, On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 1940. 62(7): p. 1723-1732.
75. X. Yin, Q. Zhao, B. Shao, W. Lv, Y. Li, and H. You, Synthesis and luminescent properties of uniform monodisperse YBO3:Eu3+/Tb3+ microspheres. CrystEngComm, 2014. 16(25): p. 5543-5550.
76. C.F. Li, W.H. Ho, C.S. Jiang, C.C. Lai, M.J. Wang, and S.K. Yen, Electrolytic Sn/Li2O coatings for thin-film lithium ion battery anodes. Journal of Power Sources, 2011. 196(2): p. 768-775.