跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陶漢威
Han-Wei Tau
論文名稱: 針對受試者操作特徵曲線下部分面積建立的非劣性檢定
Non-inferiority tests based on the partial area under ROC curve
指導教授: 陳玉英
YUH-ING CHEN
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 94
中文關鍵詞: 非劣性檢定關聯結構函數廣義伽瑪分布受試者操作特徵曲線
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文在病例對照研究之下,探求相對於一種既存標準的醫學診斷方法,
    另一種嫌究中的醫學診斷方法是否具備非劣性。此一研究中的每一個受試
    者皆接受兩種不同的診斷方法,所得到的是具有相關性的成對診斷值。本
    文考慮將成對資料利用冪轉換,轉換成近似二元常態分布的資料,然後進
    行現有文獻中的有母數非劣性檢定。另一方面,本文應用不同的廣義伽瑪
    分布描述右偏分布的二個診斷資料,並且使用適當的關聯結構函數聯結上
    述的兩個邊際分布,用以描述成對資料的聯合分布。然後,在此一聯合分
    布之下,建構兩條受試者操作特徵曲線,並且根據二條估計的曲線下的部
    分面積之差異進行非劣性檢定。本文進一步在不同的關聯結構函數、廣義
    伽瑪分邊際分布、相關係數等條件下,藉由模擬研究探討本文所提檢定方
    法的型I 誤差率和檢定力表現。最後藉由分析一個實例說明上述檢定方法的
    應用。


    In this paper, we consider testing the non-inferiority of two medical
    diagnostic methods in a case-control study where each subject receiving the two
    different diagnostics produces correlated paired measurements. Note that it
    occurs often in practice that the marginal distributions of the measurements are
    right-skewed. Therefore, we first apply the power transformation to the
    paired data so that they would behave like the bivariate normal data. One
    parametric non-inferiority test is then implemented based on the transformed
    data. On the other hand, we suggest and employ appropriate copula function
    which links two generalized gamma distributions to describe the joint
    distribution of the paired measurements. Under the joint distribution, an
    approximate test based on the difference between the partial areas under the two
    estimated Receiver Operating Characteristic (ROC) curves is then constructed.
    In this paper, we would like to test if the difference between the true areas is
    within an allowable region. The results of a simulation investigation of the
    level and power performances of the approximate test for different degrees of
    correlation in several possible copula functions with a variety of marginal
    distributions are reported. Finally, a real data set is illustrated by using the
    approximate test.

    摘要....................i Abstract...............ii 致謝辭..................iii 目錄....................iv 圖目錄...................vi 表目錄...................vii 第一章 研究動機及目的.......................1 第二章 文獻回顧............................6 2.1 冪轉換資料...........................6 2.2 無母數之非劣性檢定....................7 2.3 常態分布下的有母數之非劣性檢定..........8 2.4 廣義伽瑪分布.........................9 2.5 關聯結構函數........................10 第三章 統計方法............................13 第四章 模擬研究............................17 4.1 模擬方法............................17 4.2 模擬結果............................18 第五章 實例分析............................20 第六章 總結與討論...........................24 參考文獻.....................................25 附錄........................................27

    1. Li, C.R., Liao, C.T. and Liu, J.P.(2006) A non-inferiority test for diagnostic accuracy based on the paired partial areas under ROC curves. Computational Statistics & Data Analysis. 50: 1855 – 1876.
    2. Box, G.E.P. and Cox, D.R. (1964) An analysis of transformations. Journal of the Royal Statistical Society, Series B. 26:211-252.
    3. Cox, C., Chu, H., Schneider, M.F. and Munoz, A .(2007)Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution. Statistics in Medicine. 26:4352-4374.
    4. DeLong, E., DeLong, D. and Clarke-Pearson, D.(1988) Comparing the areas under two or more correlated receiver operation characteristic curves: a non-parametric approach. Biometrics.44:837-845.
    5. Faraggi, D. and Reiser, B.(2002) Estimation of the area under the ROC curve. Statistics in Medicine. 21:3093-3106.
    6. Greiner, M., Pfeiffer, D. and Smith, R.(2005) The partial area under the summary ROC curve. Statistics in Medicine. 24: 2025–2040.
    7. Liu, J.P., Ma, M.C., Wu, C.Y. and Tai, J.Y.(2006) Tests of equivalence and non-inferiority for diagnostic accuracy based on the paired areas under ROC curves. Statistics in Medicine. 25:1219-1238.
    8. Molodianovitch, K., Faraggi, D. and Reiser, B. (2006) Comparing the areas under two correlated ROC curves: parametric and non-parametric approaches. Biometrical Journal. 48: 745–757
    9. Nelsen, R.B.( 2006) An Introduction to Copulas. Second Edition. Springer: New York.
    10. Stacy, E.(1962) A generalization of the gamma distribution. Annals of Mathematical Statistics. 33:1187-1192.
    11. McClish, D.K.(1989) Analyzing a portion of the ROC curve. Medical Decision Making.9:190–195.
    12. Wieand, S., Gail, M.H., James, B.R. and James, K.L.(1989) A family of non-parametric statistics for comparing diagnostic markers with paired or unpaired data. Biometrika. 76:585-592.
    13. Zhou, X.H., Obuchowski, N.A., and McClish, D.K.(2002) Statistical Methods in Diagnostic Medicine. Wiley: New York.
    14. Pepe, M.S.(2003) The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford University Press:New York.
    15. 陳秀琴 (2011). 針對右偏分布資料進行兩個醫學診斷方法之相等性檢定。國立中央大學統計研究所碩士論文。
    16. 李念純 (2011). 一維及二維右設限存活資料的適合度檢定。國立中央大學統計研究所碩士論文。

    QR CODE
    :::