| 研究生: |
邱鈺智 Yu-Zhi Qiu |
|---|---|
| 論文名稱: |
深度學習與資料擴增於山崩監測預測之可行性評估 Development of Deep learning and GAN applied to landslide prediction |
| 指導教授: | 鐘志忠 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 201 |
| 中文關鍵詞: | 深度學習 、山崩預測 、資料擴增 、生成對抗網路 、支持向量機 、長短期記憶神經網路 、門閥循環單元網路 |
| 外文關鍵詞: | Deep Learning, Landslide Prediction, Data Augmentation, GAN, SVM, LSTM, GRU |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著氣候的劇烈變遷,山崩破壞也越加嚴重,因此如果能預測山崩就能減少人員傷亡以及財產損失,而現今山崩預測研究中又以深度學習(Deep Learning)的成長最為顯著,但利用深度學習預測山崩上有一困難點為山崩監測資料較為缺乏,如地下水位、邊坡位移量獲取相對於其他水文或氣象資料更難以取得。而在深度學習模型的訓練過程中,是需要有大量的資料才能有良好的預測結果,故本研究同步提出使用生成對抗網路(Generative Adversarial Networks, GAN),以2007-2008年廬山監測資料為範例進行資料擴增,並建置支持向量機(Support Vector Machine, SVM)、長短期記憶網路(Long Short-Term Memory Network, LSTM)和門閥限循環單元網路(Gated Recurrent Unit Network, GRU)三種預測模型,除探討利用原始資料進行訓練預測外,本研究並利用資料擴增後之資料集探討預測結果。實驗顯示使用原始資料且預測成效較差的水位(孔位B01、B04、B07),其GRU預測R-Square值分別為 0.690、0.347、0.759,再使用GAN資料擴增後,B01、B04、B07 GRU預測R-Square值提升至0.943、0.901、0.760。最後使用文獻兩組山崩實際案例進行比較可得知,在資料擴增後預測山崩位移皆有更佳預測結果。本研究所提出深度學習應用可應用對於缺乏山崩資料而想使用深度學習預測之參考依據。
With the dramatic climate changes, landslides damage has become more serious. Therefore, if landslides can be successfully predicted, casualties and property damage can be reduced. For various landslide predictions, the growth of Deep Learning is the most significant. However, a major difficulty in landslide prediction is obtaining landslide monitoring data, such as groundwater level and slope displacement. They are more challenging to obtain than other hydrological or meteorological data. In the deep learning model training process, a large amount of data is necessary for good prediction results. Therefore, this study proposes to combine Generative Adversarial Networks, using data augmentation with 2007-2008 Lushan monitoring data as an example, and build three prediction models: Support Vector Machine (SVM), Long Short-Term Memory(LSTM), and Gated Recurrent Unit (GRU), to compare whether the augmented data has more predictive results than using the original data. Experiment results show that GRU with original data can predict water levels and R-Square values of B01, B04, and B07 are 0.690, 0.347, and 0.759. Using GAN data augmentation for water levels has the predicted R-Square values of B01, B04, and B07 of 0.943, 0.901, and 0.760. The latter one has significantly improved. This study further evaluates deep learning applications that can be applied in other cases. Consequently, the proposed GRU with the GAN method is a feasible approach for landslide prediction.
Cao, Y., Yin, K., Alexander, D. E., & Zhou, C. (2016). Using an extreme learning machine to predict the displacement of step-like landslides in relation to controlling factors. Landslides, 13(4), 725–736. https://doi.org/10.1007/s10346-015-0596-z
Chen, H., Zeng, Z., & Tang, H. (2015). Landslide Deformation Prediction Based on Recurrent Neural Network. Neural Processing Letters, 41(2), 169–178. https://doi.org/10.1007/s11063-013-9318-5
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/BF00994018
Dash, S., Yale, A., Guyon, I., & Bennett, K. P. (2020). Medical Time-Series Data Generation Using Generative Adversarial Networks. Artificial Intelligence in Medicine, 382–391. https://doi.org/10.1007/978-3-030-59137-3_34
Esteban, C., Hyland, S. L., & Rätsch, G. (2017). Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs. https://doi.org/10.48550/arXiv.1706.02633
Fekri, M. N., Ghosh, A. M., & Grolinger, K. (2020). Generating Energy Data for Machine Learning with Recurrent Generative Adversarial Networks. Energies, 13(1), 130. https://doi.org/10.3390/en13010130
Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. ArXiv Preprint, arXiv.
Hong, H., Pourghasemi, H. R., & Pourtaghi, Z. S. (2016). Landslide susceptibility assessment in Lianhua County (China): A comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology, 259, 105–118. https://doi.org/10.1016/j.geomorph.2016.02.012
Huang, F., Huang, J., Jiang, S., & Zhou, C. (2017). Landslide displacement prediction based on multivariate chaotic model and extreme learning machine. Engineering Geology, 218, 173–186. https://doi.org/10.1016/j.enggeo.2017.01.016
Huang, W., Nakamori, Y., & Wang, S.-Y. (2005). Forecasting stock market movement direction with support vector machine. Computers & Operations Research, 32(10), 2513–2522. https://doi.org/10.1016/j.cor.2004.03.016
Liong, S.-Y., & Sivapragasam, C. (2002). Flood Stage Forecasting with Support Vector Machines1. JAWRA Journal of the American Water Resources Association, 38(1), 173–186. https://doi.org/10.1111/j.1752-1688.2002.tb01544.x
Min, J. H., & Lee, Y.-C. (2005). Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications, 28(4), 603–614. https://doi.org/10.1016/j.eswa.2004.12.008
Nguyen V., Schulze S., & Osborne M. A. (2019). Bayesian Optimization for Iterative Learning. https://doi.org/10.48550/arXiv.1909.09593
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484–489. https://doi.org/10.1038/nature16961
Varnes, D. J. (1978). SLOPE MOVEMENT TYPES AND PROCESSES. Transportation Research Board Special Report, 176. https://trid.trb.org/view/86168
Yang, B., Yin, K., Lacasse, S., & Liu, Z. (2019). Time series analysis and long short-term memory neural network to predict landslide displacement. Landslides. https://doi.org/10.1007/s10346-018-01127-x
Yildiz, Z. C., & Yildiz, S. B. (2022). A portfolio construction framework using LSTM-based stock markets forecasting. International Journal of Finance & Economics, 27(2), 2356–2366. https://doi.org/10.1002/ijfe.2277
Yoon, J., Jarrett, D., & van der Schaar, M. (2019). Time-series Generative Adversarial Networks. Advances in Neural Information Processing Systems, 32. https://papers.nips.cc/paper/2019/hash/c9efe5f26cd17ba6216bbe2a7d26d490-Abstract.html
Zhao, Z., Chen, W., Wu, X., Chen, P. C. Y., & Liu, J. (2017). LSTM network: A deep learning approach for short-term traffic forecast. Undefined. https://www.semanticscholar.org/paper/LSTM-network%3A-a-deep-learning-approach-for-traffic-Zhao-Chen/eb8b18fa6a2c42b2c33395633508609e4ec9dcc5
費立沅, 廖瑞堂, 紀宗吉, 邱禎龍, 林錫宏, 陳昭維, 呂家豪, & 王國隆. (2018). 潛在大規模崩塌之調查及觀測技術手冊. 經濟部中央地質調查所 ; 青山工程顧問股份有限公司.
水土保持局第三工程所(2006).台14線88K至91K地滑地治理調查規劃 工程. 黎明工程顧問股份有限公司.