跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林則余
Tse-yu Lin
論文名稱: 羽軸的微結構與力學性質研究
Microstructures and Mechanical Properties of the Feather Rachis
指導教授: 林耿慧
Keng-hui Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 65
中文關鍵詞: 羽毛羽軸羽髓彈性模量
外文關鍵詞: feather, feather rachis, feather medulla, elastic modulus
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 羽毛是自然界中最複雜的皮膚衍生物。羽毛複雜的成長過程所產生外觀上的階層分支、高度組織化的內外層結構,及在鳥類生活中所扮演的多樣功性,讓羽毛成為近代跨研究領域的重要課題。羽毛早期的研究以解剖學分析為主;近年因恐龍羽毛的史前化石出土,啟發了更多人由演化及羽毛形成過程的觀點來探究羽毛課題。新穎羽毛演化模型的發表,和羽毛形態發生過程中關鍵分子生物訊號的確認,是近年來羽毛研究重要的里程碑。從經典研究結果得知,在毛囊這個高度不對稱環境中所生成的羽毛,應具有材質上的非均性,但前人卻鮮少深入探討此一非均性對羽毛力學性質的影響。本論文將探討:羽軸內部微結構的非均性及演化上不同鳥種所展現的羽毛微結構差異,對於羽軸力學性質的影響。
    我們首先量測羽軸髓質和皮質不同徑向方位的彎曲彈性模量,以探討組成羽軸的皮質及羽髓,於彎曲測試上是否存在非均向性。我們利用自行設計的彎曲試驗機所量測的結果得知,由單一物種、部位所取得羽髓多孔微結構,其微結構的非均性,並不會造成非均向的羽髓彈性模量。然而,於橫跨五種不同鳥種羽皮質和羽髓彎曲彈性模量研究,我們發現相異物種羽髓的彈性模量差別甚大:鴕鳥羽髓的彈性模量比其他近代鳥種大一倍以上;但不同物種羽毛皮質部位的彈性模量差異不大。
    我們亦研究羽軸含水量對微結構形態所產生的影響,以了解羽毛由生長到成熟過程中羽毛脫水過程的微觀圖像:藉由螢光顯微鏡觀察五種鳥類羽軸厚片的橫截面,並解析皮質及羽髓的形態於吸水與脫水過程的變化發現,每種羽軸吸水後皆會有明顯的膨脹,且多數會呈現以羽軸側支方向為主的非均向的膨脹;無皮質包覆羽髓的吸水膨脹主要方向,與其內部孔洞週期性的結構排列方向相垂直;微結構越明顯的羽髓,隨含水量變化所導致的整體形變比例也越大。


    Feathers are the most complex integumentary appendage found in nature. The complex feather regeneration leads to its hierarchical branching, highly organized inner-outer structure, and multifunction in avian daily life. The feather has become an important topic in modern interdisciplinary research field. In contrast to early anatomy research of feathers, the excavation of prehistoric dinosaur feather fossils have inspired scientists to explore feathers in the perspective of evolution and regeneration recently. The novel feather development model and the confirmation of crucial biochemical signals during feather morphogenesis are important milestones in the modern feather research.
    The feather regeneration in an asymmetric avian follicle makes the composition of a feather exhibits non-uniform material properties. However, former researchers rarely investigate how the non-uniform composition of feather may contribute to its mechanical properties. In this thesis, we investigate the effect of non-uniform inner microstructure in the feather rachis among species, and study the influence of microstructure on rachis mechanical properties. We use a home-made bending test system to measure the bending elastic modulus of the rachis medulla and cortex in different bending direction. The result indicates that the non-uniform microstructure of the porous medulla from a single species do not introduce the anisotropy of the elastic modulus. However, the measured elastic modulus of medulla have a distinctive difference among feathers from various species.
    We also investigate the influence of the moisture to the rachis microstructure in order to understand the impact of the dehydration during feather development microscopically. We use the fluorescent microscopy to observe the morphology of medulla and cortex during hydration and dehydration of the rachis. We observe the swelling of the feather rachis associated with the hydration. The rachis prefer expanding anisotropically towards the barbs direction. The hydrated rachis medulla without cortex tends to expand perpendicularly to the direction of microstructure pattern.

    摘要....................................................I ABSTRACT.............................................. II 誌謝..................................................III 目錄...................................................IV 圖目錄.................................................VI 表目錄...............................................VIII 第一章 緒論............................................. 1 第二章 文獻探討......................................... 4 2.1羽毛解剖學構造........................................4 2.2羽毛生長與演化........................................6 2.3羽毛力學性質量測......................................10 第三章 實驗架設與測試................................... 15 3.1定義羽毛座標......,,,................................15 3.2 樑柱狀羽毛樣品準備...................................17 3.3兩點彎曲試驗原理......................................19 3.4 實驗架設與試驗機解析度測試............................21 第四章 實驗結果........................................ 25 4.1髓質樑彎曲試驗-微結構不明顯的孔雀尾覆羽................25 4.2髓質樑彎曲試驗-微結構明顯的鴕鳥飛羽....................34 4.3 不同鳥種羽髓彈性模量與孔隙率比較......................41 4.4 皮質樑彎曲力學性質...................................45 4.5 羽軸含水量與形變的關係...............................49 第五章 結論與未來展望................................... 61 參考文獻............................................... 63

    1. Prum, R.O., Development and evolutionary origin of feathers. Journal of Experimental Zoology, 1999. 285(4): p. 291-306.
    2. Prum, Richard O. and A.H. Brush, The Evolutionary Origin and Diversification of Feathers. The Quarterly Review of Biology, 2002. 77(3): p. 261-295.
    3. Bonser, R.H.C., The mechanical properties of feather keratin. Journal of Zoology, 1996. 239(3): p. 477-484.
    4. Weiss, I.M. and H.O.K. Kirchner, The peacock's train (Pavo cristatus and Pavo cristatus mut. alba) I. structure, mechanics, and chemistry of the tail feather coverts. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 2010. 313A(10): p. 690-703.
    5. Worcester, S.E., The scaling of the size and stiffness of primary flight feathers. Journal of Zoology, 1996. 239(3): p. 609-624.
    6. Chen, C.F., et al., Development, Regeneration, and Evolution of Feathers. Annual Review of Animal Biosciences, Vol 3, 2015. 3: p. 169-195.
    7. Wang, X., et al., Size scaling and stiffness of avian primary feathers: implications for the flight of Mesozoic birds. Journal of Evolutionary Biology, 2012. 25(3): p. 547-555.
    8. Ng, C.S., et al., The Chicken Frizzle Feather Is Due to an α-Keratin (<italic>KRT75</italic>) Mutation That Causes a Defective Rachis. PLoS Genet, 2012. 8(7): p. e1002748.
    9. Meyers, M.A., et al., Biological materials: A materials science approach. Journal of the Mechanical Behavior of Biomedical Materials, 2011. 4(5): p. 626-657.
    10. Meyers, M.A., J. McKittrick, and P.-Y. Chen, Structural Biological Materials: Critical Mechanics-Materials Connections. Science, 2013. 339(6121): p. 773-779.
    11. Liu, Z.Q., et al., Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder – The peacock’s tail coverts shaft and its components, in Acta Biomaterialia2015. p. 137-151.
    12. Gibson, L.J., Biomechanics of cellular solids. Journal of Biomechanics, 2005. 38(3): p. 377-399.
    13. Gibson, L.J. and F. Ashby, Cellular Solids: Structure and Properties. 1997: Cambridge University Press.
    14. Bostandzhiyan, S.A., A.V. Bokov, and A.S. Shteinberg, Flexural characteristics and aerodynamic aspects of the design of the bird feather shaft. Doklady Physics, 2008. 53(9): p. 476-479.
    15. Lucas, A.M. and P.R. Stettenheim, Avian anatomy: Integument. 1972: United States department of agriculture.
    16. Fucheng, Z., Z. Zhonghe, and G. Dyke, Feathers and ‘feather-like’ integumentary structures in Liaoning birds and dinosaurs. Geological Journal, 2006. 41(3-4): p. 395-404.
    17. Nudds, R.L. and G.J. Dyke, Narrow Primary Feather Rachises in Confuciusornis and Archaeopteryx Suggest Poor Flight Ability. Science, 2010. 328(5980): p. 887-889.
    18. Zheng, X., et al., Hind Wings in Basal Birds and the Evolution of Leg Feathers. Science, 2013. 339(6125): p. 1309-1312.
    19. Zhou, Z., The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil evidence. Naturwissenschaften, 2004. 91(10): p. 455-471.
    20. Bachmann, T., et al., Flexural stiffness of feather shafts: geometry rules over material properties. The Journal of Experimental Biology, 2012. 215(3): p. 405-415.
    21. Bonser, R. and P. Purslow, The Young's modulus of feather keratin. The Journal of Experimental Biology, 1995. 198(4): p. 1029-33.
    22. MACLEOD, G.D., Mechanical Properties of Contour Feathers. The Journal of Experimental Biology, 1980. 87(1): p. 65-72.
    23. Pass, D.A., Normal anatomy of the avian skin and feathers. Seminars in Avian and Exotic Pet Medicine, 1995. 4(4): p. 152-160.
    24. Bonser, R.H.C., The mechanical performance of medullary foam from feathers. Journal of Materials Science Letters, 2001. 20(10): p. 941-942.
    25. Feduccia, A., Aerodynamic Model for the Early Evolution of Feathers Provided by Propithecus (Primates, Lemuridae). Journal of Theoretical Biology, 1993. 160(2): p. 159-164.
    26. Regal, P.J., The Evolutionary Origin of Feathers. The Quarterly Review of Biology, 1975. 50(1): p. 35-66.
    27. Mayr, E., The emergence of evolutionary novelties, in The evolution of life, S. Tax, Editor 1960: Chicago: University of Chicago Press. p. 349-380.
    28. Dyck, J.A.N., The Evolution of Feathers*. Zoologica Scripta, 1985. 14(2): p. 137-154.
    29. Lingham-Soliar, T., R.H.C. Bonser, and J. Wesley-Smith, Selective biodegradation of keratin matrix in feather rachis reveals classic bioengineering. Vol. 277. 2010. 1161-1168.
    30. PURSLOW, P.P. and J.F.V. VINCENT, Mechanical Properties of Primary Feathers From the Pigeon. The Journal of Experimental Biology, 1978. 72(1): p. 251-260.
    31. Renault, A., L. Jaouen, and F. Sgard, Characterization of elastic parameters of acoustical porous materials from beam bending vibrations. Journal of Sound and Vibration, 2011. 330(9): p. 1950-1963.
    32. Cameron, G.J., T.J. Wess, and R.H.C. Bonser, Young’s modulus varies with differential orientation of keratin in feathers. Journal of Structural Biology, 2003. 143(2): p. 118-123.

    QR CODE
    :::