| 研究生: |
趙彥茹 Yen-ju Chao |
|---|---|
| 論文名稱: |
貝氏補值方法應用在行星資料的週期和質量上 Bayesian imputation with an application to mass-period functions of extrasolar planets |
| 指導教授: |
鄧惠文
Huei-Wen Teng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 遺失值 、補值 、貝氏 |
| 外文關鍵詞: | copula, Bayesian, Missing data, imputation |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在日常生活中,我們常常需要搜集資料,但常遇到資料搜集的不齊全
也就是有遺失值的產生。在這篇論文當中,我們提出了一個貝氏方法
來解決遺失值的問題,並且將這個方法應用到行星資料的質量及週期
上。而我們使用天文學上最常使用的柏拉圖(Pareto)模型當成基準模
型,並且使用Frank copula 來連結兩個為柏拉圖的邊際分配。
選模規則建議我們在這些行星資料上使用混合模型較適當。實證分析
建議我們應該將資料做log-transformed,並且使用混合分配的模型。
因此本篇論文將貝氏補值方法用到這些模型上。
Missing data problems frequently occur in many field. In this
thesis, we provide a Bayesian method for the missing data
problem, and apply the proposed method to the mass and period
functions for extrasolar planets. The benchmark model is
commonly used in astronomy, and uses a Frank copula to connect
two pareto marginal distributions.
Empirical analysis suggests us to provide a mixture model for
the logarithmically transformed data. We apply our Bayesian
imputation based on these models. Model selection criterion
suggests that our proposed mixture model fits the data better.
Boone, E. L., K. Ye, and E. P. Smith (2009). Using data augmentation via the gibbs
sampler to incorporate missing covariate structure in linear models for ecological
assessments. Environ Ecol Stat, 75-87.
Buck, S. F. (1960). A method of estimation of missing values in multivariate data
suitable for use with an electronic computer. Journal of the Royal Statistical
Society. Series B (Methodological) 22 (2), 302-306.
Haitovsky, Y. (1968). Missing data in regression analysis. Journal of the Royal
Statistical Society. Series B (Methodological) 30 (1), 67-82.
Hartley, H. (1958). Maximum likelihood estimation from incomplete data. Biomet-
rics 14, 174-194.
Kim, J. K. and W. Fuller (2004). Fractional hot deck imputation. Biometrika 91 (3),
559-578.
Kong, A., J. S. Liu, and W. H. Wong (1994). Sequential imputations and bayesian
missing data problems. Journal of the American Statistical Association 89 (425),
278-288.
Littel, R. J. A. and D. B. Rubin (1987). Statistical Analysis with Missing Data. A
JOHN WILEY and SONS, INC..
Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581-592.
46
Saha, C. and M. P. Jones (2009). Bias in the last observation carried forward method
under informative dropout. Statistical Planning and Inference 139, 246-255.
Schneider, T. (2001). Analysis of incomplete climate data: Estimation of mean
values and covariance matrices and imputation of missing values. Journal of
Climate, 853-871.
Sebastiani, P. and M. Ramoni (2001). Bayesian selection of decomposable models
with incomplete data. American Statistical Association 96 (456), 1375-1386.
Tanner, M. A. and W. H. Wong (1987). The calculation of posterior distributions
by data augmentation. Journal of the American Statistical Association 82 (398),
528-540.
Ene Kaarik (2006). Modeling dropouts by conditional distribution, a copulabasedapproach.
Metodolo ski zvezki 3 (1), 109-120.