| 研究生: |
曾鎂錚 Mei-Cheng Tseng |
|---|---|
| 論文名稱: |
應用深度學習於電網互動高效建築與連結社區之用電資料分析 |
| 指導教授: |
周建成
Chien-Cheng Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 建築能耗模型 、節電 、預測用電量發展 、深度學習 、Tensorflow應用 |
| 外文關鍵詞: | building energy consumption model, energy saving, electricity consumption prediction development, deep learning, TensorFlow application |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技發展迅速,越來越多大型企業投入智能家電開發,具備人工智能功用的電器設備廣泛應用於住家生活,常見的像是應用物聯網(IoT)技術,採用遠端感測器連接網路方式遙控智能家電,讓使用者不必回到家也可以即時啟用遠端網路操作,既方便又省時。而這些便捷的家電設備能被應用於建築能源監控系統,透過實時監測使其更有效分析用電量使用趨勢,達到監督使用者用電情形。
根據國際能源署所發布數據顯示,建築和建築施工部門合計佔全球最終能源消耗的三分之一以上,並佔全球總碳排放量的近40%。隨著發展中國家的城市化進程加快和氣候變化的影響,建築能耗持續增加,因此如何減緩住宅部門能源需求之成長是目前世界政府的一大難題。
本研究將建築能耗模型結合家戶用電使用進行能耗預測分析,選擇基於Python的微框架Flask作為程式介面以處理大筆用電量數據,相較於傳統多以人力處理繁瑣資料數據,既省時又提高數據處理準確度,對於後續系統維護更為方便且快速。此外,本研究利用TensorFlow深度學習技術以預測未來短期內各項能耗結果,從模型建立考量到展示不同時間區段預測成果,期望能有效掌握家戶用電走向,並根據預測結果調整用電行為,達到更有效的節能管理。
為了進一步提升預測的真實性與實用性,本研究引入鄰里概念,藉由自定義社區鄰居的做法,將用電模式較為相似的住戶劃分同一族群,以彼此日常家電用電行為進行比較,計算可能產生用電量,發揮同儕比較心理,提升用戶對自身用電行為的關注度,進而促使整體節能意識的提升,達到自主監督的效益。
在全球積極推動淨零排放以及智慧能源管理的背景下,本研究的長期目標是透過智慧電表數據與深度學習技術的結合,減少家庭與商業建築的能源消耗,進而推動再生能源轉換利用,使得用電量趨於較平緩曲線,解決電力供應不及狀況。最終長期目標是減少用電能源消耗,達成永續環境,提供社會優質、舒適又安全的生活環境。
With the advancement of smart technologies, AI-powered and IoT-enabled home appliances have been widely adopted, allowing real-time remote control and energy management. These smart devices can be integrated into building energy systems to monitor electricity consumption patterns and promote efficient usage.
Given that the building sector accounts for over one-third of global energy consumption and nearly 40% of carbon emissions, reducing household energy demand is a pressing global challenge. This study proposes an energy forecasting framework that combines household electricity data with building energy models. It adoptsFlaskas a lightweight system interface and utilizes TensorFlow deep learning to predict short-term energy usage trends, improving accuracy and operational efficiency over traditional methods.
To enhance user engagement and the practicality of predictions, a neighborhood clustering approach is introduced, enabling peer comparison and encouraging energy-saving behavior through social influence. The system supports real-time monitoring and informed energy decisions.
This research contributes to smart energy management, facilitates renewable energy adoption, and aims to flatten demand peaks. Ultimately, it supports carbon reduction goals while promoting a sustainable and comfortable living environment.
參考文獻
[1] Aliyu, I., Um, T.-W., Lee, S.-J., Lim, C. G., & Kim, J. (2023). Deep Learning for Multivariate Prediction of Building Energy Performance of Residential Buildings. Computers, Materials & Continua, 75(3).
[2] Baduge, S. K., Thilakarathna, S., Perera, J. S., Arashpour, M., Sharafi, P., Teodosio, B., Shringi, A., & Mendis, P. (2022). Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Automation in Construction, 141, 104440.
[3] Boogen, N., Datta, S., & Filippini, M. (2017). Dynamic models of residential electricity demand: Evidence from Switzerland. Energy Strategy Reviews, 18, 85-92.
[4] Bourdeau, M., qiang Zhai, X., Nefzaoui, E., Guo, X., & Chatellier, P. (2019). Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society, 48, 101533.
[5] California Independent System Operator, C. (2016). What the duck curve tells us about managing a green grid.
[6] Coakley, D., Raftery, P., & Keane, M. (2014). A review of methods to match building energy simulation models to measured data. Renewable and Sustainable Energy Reviews, 37, 123-141.
[7] Chang, C.H., Chuang, M.L., Tan, J.C., Hiseh, C.C., and Chou, C.C. (2022, Nov). Indoor Safety Monitoring for Falls or Restricted Areas Using Wi-Fi Channel State Information and Deep Learning Methods in Mega Building Construction Projects. Sustainability, 14(22), 15034.
[8] Chang, C.H., Tan, J.C., Wang, R.G., Wu, P.Y., and Chou, C.C. (2020, Sep). Sound-based indoor positioning for rescue using deep learning, building information models and virtual reality. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 32(5), 383-392.
[9] Dakota Electric Association, C. M. (2024). Virtual Power Plant Explained. https://www.dakotaelectric.com/2024/02/01/virtual-power-plant-explained/
[10] Deng, L., Li, G., Han, S., Shi, L., & Xie, Y. (2020). Model compression and hardware acceleration for neural networks: A comprehensive survey. Proceedings of the IEEE, 108(4), 485-532.
[11] Fan, H., MacGill, I., & Sproul, A. (2017). Statistical analysis of drivers of residential peak electricity demand. Energy and Buildings, 141, 205-217.
[12] Henning, S., Hasselbring, W., Burmester, H., Möbius, A., & Wojcieszak, M. (2021). Goals and measures for analyzing power consumption data in manufacturing enterprises. Journal of Data, Information and Management, 3(1), 65-82.
[13] Hsieh, C.C., Liu, C.Y., Wu, P.Y., Jeng, A.P., Wang, R.G., and Chou, C.C. (2019, Jun). Building information modeling services reuse for facility management for semiconductor fabrication plants. Automation in Construction, 102, 270-287.
[14] Iruela, J., Ruiz, L. B., Capel, M., & Pegalajar, M. (2021). A tensorflow approach to data analysis for time series forecasting in the energy-efficiency realm. Energies, 14(13), 4038.
[15] Jeng, A.P., Wang, R.G., Wu, P.Y., Tai, J.K., Tan, J.C., and Chou, C.C. (2019, Apr). Deep learning-based smart meter data analytics for early warning of possible electrical fires. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 31(2), 193-204.
[16] Li, C., Ding, Z., Zhao, D., Yi, J., & Zhang, G. (2017). Building energy consumption prediction: An extreme deep learning approach. Energies, 10(10), 1525.
[17] Liu, C.Y., Wu, P.Y., Tan, J.C., Chuang, M.L., Wang, R.G., and Chou, C.C. (2021, Dec). An automatic fire rescue deployment method using building information modeling and ontology: Taking long-term care institutes as an example. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 33(8), 641-651.
[18] Nabavi, S. A., Motlagh, N. H., Zaidan, M. A., Aslani, A., & Zakeri, B. (2021). Deep learning in energy modeling: Application in smart buildings with distributed energy generation. IEEE Access, 9, 125439-125461.
[19] Natarajan, Y., KR, S. P., Wadhwa, G., Choi, Y., Chen, Z., Lee, D.-E., & Mi, Y. (2024). Enhancing Building Energy Efficiency with IoT-Driven Hybrid Deep Learning Models for Accurate Energy Consumption Prediction. Sustainability, 16(5), 1925.
[20] Neto, A. S. B., Farias, F., Mialaret, M. A. T., Cartaxo, B., Lima, P. A., & Maciel, P. (2021). Building energy consumption models based on smartphone user’s usage patterns. Knowledge-based systems, 213, 106680.
[21] Olgyay, V., Coan, S., Webster, B., & Livingood, W. (2020). Connected communities: A multi-building energy management approach.
[22] Patil, S. M., Vijayalashmi, M., & Tapaskar, R. (2017). IoT based solar energy monitoring system. 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS).
[23] Satchwell, A., Piette, M. A., Khandekar, A., Granderson, J., Frick, N. M., Hledik, R., Faruqui, A., Lam, L., Ross, S., & Cohen, J. (2021). A national roadmap for grid-interactive efficient buildings.
[24] Szczepaniuk, H., & Szczepaniuk, E. K. (2022). Applications of artificial intelligence algorithms in the energy sector. Energies, 16(1), 347.
[25] Tai, J.K., Liu, C.Y., Chu, C.P., Wang, S.J., Wang, R.G., and Chou, C.C. (2023, Nov). Automated Spatial Configuration for Indoor Refugee Shelters Using Building Information Modeling and Ontology. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 35(7), 669-680.
[26] Tan, J.C., Chuang, M.L., Chang, C.H., Wang, R.G., and Chou, C.C. (2022, Nov). Preliminary exploration of applying agile project management to compound disaster preparation: Taking the case of finding agile consultants as an example. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 34(7), 649-661.
[27] Tao, L., Zou, L., & Gao, Z. (2024). Application research of deep learning-basedBIMTechnology in Intelligent Construction. International Journal of Low-Carbon Technologies, 19, 2249-2257.
[28] Tien, P. W., Wei, S., Darkwa, J., Wood, C., & Calautit, J. K. (2022). Machine learning and deep learning methods for enhancing building energy efficiency and indoor environmental quality–a review. Energy and AI, 10, 100198.
[29] Wang, R.G., Chuang, M.L., Ke, C.Y., Chien, Y.F., Ho, W.J., Chiang, K.C., Hung, Y.C., Tsai, C.H., and Chou, C.C. (2024, Dec). Predicting Imminent Electrical Safety Incidents Using Smart Meter Big Data With Large Language Models. IEEE Access, 12, 184940.
[30] Wang, R.G., Ho, W.J., Chiang, K.C., Hung, Y.C., Tai, J.K., Tan, J.C., Chuang, M.L., Ke, C.Y., Chien, Y.F., Jeng, A.P., and Chou, C.C. (2023, Sep). Analyzing Long-Term and High Instantaneous Power Consumption of Buildings from Smart Meter Big Data with Deep Learning and Knowledge Graph Techniques. Energies, 16, 6893.
[31] Wang, R.G., Wu, P.Y., Liu, C.Y., Tan, J.C., Chuang, M.L., and Chou, C.C. (2022, Jul). Route Planning for Fire Rescue Operations in Long‐term Care Facilities Using Ontology and Building Information Models. Buildings, 12, 1060.
[32] Wang, S.J., Wang, R.G., Ke, C.Y., Chien, Y.F., Chuang, M.L., and Chou, C.C. (2024, Nov). Exploring and Applying Digital Transformation in the Transportation of Prefabricated Construction Components. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 36(5), 451-459.
[33] Wei, F., Yao, G., Yang, Y., & Sun, Y. (2019). Instance-level recognition and quantification for concrete surface bughole based on deep learning. Automation in Construction, 107, 102920.
[34] Xiao, J., Wang, L., Cheng, Y., Zhang, J., Hu, J., Tan, S., Su, Y., & Zhou, H. (2023).WebFront-end Development based onFlaskArchitecture for Image Recognition. 2023 IEEE 7th Information Technology and Mechatronics Engineering Conference (ITOEC),
[35] Yavuz, L., Önen, A., Muyeen, S., & Kamwa, I. (2019). Transformation of microgrid to virtual power plant–a comprehensive review. IET generation, transmission & distribution, 13(11), 1994-2005.
[36] Zekić-Sušac, M., Mitrović, S., & Has, A. (2021). Machine learning based system for managing energy efficiency of public sector as an approach towards smart cities. International journal of information management, 58, 102074.
[37] Zhang, G., Jiang, C., & Wang, X. (2019). Comprehensive review on structure and operation of virtual power plant in electrical system. IET generation, transmission & distribution, 13(2), 145-156.