| 研究生: |
鍾霨詠 Wei-Yung Chung |
|---|---|
| 論文名稱: |
地球自轉變化現象探討 (無) |
| 指導教授: |
趙丰
Benjamin F. Chao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球物理研究所 Graduate Institue of Geophysics |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 日長變化 、極移 、地球自轉 |
| 外文關鍵詞: | Chandler wobble, polar motion, Length of day, Earth rotation |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地球自轉的變化可定義成三個方向向量改變,習慣上又分為兩部分:極移和日長變化。造成變動的主因為地球系統中的水文環流,如大氣和海洋,通過質量重新分佈和流動與地球角動量互換。第一部分,本論文採用小波頻譜來分析日長變化(1962-2009)的震盪信號。小波頻譜分析方法,可以揭開時間序列中的非穩定週期訊號。使用最小平方法去除日長變化中潮汐訊號並扣除大氣角動量貢獻後,針對仍保有的信號,如ENSO、準兩年和十年以上振盪,去與氣候學上的週期震盪訊號做比對。本研究結果除了與以往的研究預期具有良好的一致性,更進一步排除日長變化中準六年訊號與大氣角動量的關係,並推測十三年訊號來源於地球表面的大氣與海洋中。第二部分,極移中的Chandler wobble (CW)指地球本身自由振盪。本研究重新解算地球CW振幅與相位變化(1900-2009),審視地球CW相位在1920年代出現反轉行為。本研究提出一個簡單的物理解釋說明,當物體運動能量小也就是幅度接近於零時容易發生相位跳躍(phase jump)。並根據Monte Carlo數值方法模擬長時間的極移運動,以振幅和相位行為的統計數據來驗證本研究的假設。結果顯示,1920年代地球並沒有任何的異常現象使地球CW發生相位反轉,只是該系統剛好在能量被抵消後又重新啟動,導致相位異常,其發生機率是偶然的。
The variation of Earth''s rotation, by definition a three-dimensional vectorial quantity, can be conveniently separated into two parts: polar-motion (X,Y) and the length of day (LOD). In the first part, we employ wavelet analysis on Earth''s rotation series to find the components of periodic signals and compare them to the excitation sources. The variable rotation of the Earth is produced and maintained by mass redistribution and movement within the Earth system in terms of angular momentum predominately by hydrological circulations such as atmosphere and ocean. The wavelet time-frequency spectrum has been proven as a powerful tool to reveal nonstationary periodicities in time series. Our results exhibit good consistency with previous studies as expected. After using least-square fits to remove the contributions due to tides and atmospheric angular momentum, the unknown signals, e.g. ENSO-like, quasi-biennial and some decadal oscillations are extracted. For the two strong periodic signals locate around 6 and 13 years, we are trying to confirm if they are associated to ENSO cycle. In the another part, the works primarily aim to retrieve the major amplitude and phase variations of Chandler wobble (CW) which is the normal-mode free oscillation of the rotating Earth, continuously excited by mass transports in Earth''s interior, surface, atmosphere, and ocean. It is well known that some close spectral peaks with comparable amplitudes exist in the CW band in the observed polar motion spectrum during the first half of the last century, which can actually be attributed to the unusual ~180◦ phase reversal of the CW during the 1920s–1930s. Although it was argued that the latter may be a manifestation of some dynamic changes of the Earth, it lacks specific evidences and geophysical interpretation. However, contrarily, we assert that the apparent phase reversal was simply a consequence of erratic excitation during a time when the amplitude happens to be rather small and hence easily altered. We simulate this assertion numerically by synthesizing long segments of polar motion, which are formed by convolving the free CW with Gaussian random noise meant to represent the external excitation. We do statistical examinations and indeed confirm our assertion above, indicating that the observed CW phase reversal during 1920-30 was nothing extraordinary.
Ahrens, C. D. Meteorology today. 9th Edition
Aoyama, Y., and I. Naito, Atmospheric excitation of the Chandler wobble, 1983–1998, J. Geophys. Res., 106(B5), 8941-8954, 2001.
Barnes, R. T. H., R. Hide, F. R. S., A. A. White and C. A. Wilson, Atmospheric angular momentum fluctuations, length-of-day change and polar motion. Proc. R. Soc. Lond. A 387, 31-73, 1983.
Bellanger, E., D. Gibert, and J.-L. Le Mouel, A geomagnetic triggering of Chandler wobble phase jumps?, Geophys. Res. Lett., 29, 28–1, 2002.
Brillinger, D. R., An empirical investigation of the Chandler wobble and two proposed excitation processes, Bull. lnt. Star. Inst., 45(3), 413-434, 1973.
Brzezinski, A. and J. Nastula, Oceanic excitation of the Chandler wobble, Adv. Space Res., 30, 195 – 200, doi:10.1016/S0273-1177(02)00284-3, 2002.
Chandler, S. C., On the variation of latitude, II. The Astronomical Journal 11: 65–70, 1981.
Chao, B. F. and F. Gilbert, Autoregressive estimation of complex eigenfrequencies in low frequency seismic spectra. Geophys. J. R. Astron. Soc., 63, 641-657, 1980.
Chao, B. F., Autoregressive harmonic analysis of the Earth''s polar motion using homogeneous International Latitude Service data. J. Geophys. Res., 88, 10,299-10,307, 1983.
Chao, B. F., On the excitation of the Earth''s polar motion. Geophys. Res. Lett., 12, 526-529, 1985.
Chao, B. F., W. P. O’Connor, A. T. C. Chang, D. K. Hall and J. L. Foster, Snow load effect on earth rotation and gravitational field, 1979-1985. J. Geophys. Res., 92, 9415 – 9422, 1987.
Chao, B. F., and R.S. Gross, Changes in the Earth''s rotation and low-degree gravitational field induced by earthquakes, Geophys. J. R. Astron. Soc., 91, 569-596, 1987.
Chao, B. F., The Geoid and Earth Rotation. Geophysical Interpretations of Geoid, ed. P. Vanicek and N. Christou, CRC Press, Boca Raton, 1993.
Chao, B. F. and I. Naito, Wavelet analysis provides a new tool for studying Earth''s rotation. EOS, Trans. Amer. Geophys. Union, 76, 161-165, 1995.
Chao, B. F., J. B. Merriam, and Y. Tamura, Geophysical analysis of zonal tidal signals in length of day. Geophys. J. Int., 122, 765-775, 1995.
Chao, B. F., Earth rotation. Encyclopedia of Planetary Sciences, Chapman and Hall, New York, pp. 990, 1997.
Chao, B. F., V. Dehant, R.S. Gross, R.D. Ray, D.A. Salstein, M. M. Watkins, and C. R. Wilson, Space geodesy monitors mass transports in global geophysical fluids, EOS, Trans. Amer. Geophys. Union, 81, 247-250, 2000.
Chao, B. F. and D. A. Salstein, Mass, Momentum, and Geodynamics. Intraseasonal Variability of the Atmosphere-Ocean Climate System, eds. W. K. M. Lau and D. E. Waliser, Praxis Publishing, 2005.
Chen, J. L. and C. R. Wilson, Hydrological excitations of polar motion, 1993–2002. Geophys. J. Int. 60, 833–839, 2005.
Chen, J. L., C. R. Wilson, B. F. Chao, C. K. Shum and B. D. Tapley, Hydrological and oceanic excitations to polar motion and length-of-day variation. Geophys. J. Int., 141, 149-156, 2000.
Dehant, V., C. R. Wilson, D. A. Salstein, B. F. Chao, R. S. Gross, Ch. Le Provost, and R. M. Ponte, Study of Earth''s rotation and geophysical fluids progresses. EOS, Trans. Amer. Geophys. Union, 78, 357-360, 1997.
Dickman, S. R. , Investigation of controversial polar motion features using homogeneous International Latitude Service data, J. Geophys. Res., 86, 4904-4912, 1981.
Euler, L., Theoria Motus Corporum Solidorum. Rostock, Germany: Litteris et impensis A.F. Röse, 1765.
Furuya, M. and B. F. Chao, Estimation of period and Q of the Chandler wobble. Geophys. J. Int. 127, 693-702, 1996.
Gibert, D. and J.-L. Le Mouël, Inversion of polar motion data: Chandler wobble, phase jumps, and geomagnetic jerks, J. Geophys. Res., 113, B10405, 2008.
Gillet, N., D. Jault, E. Canet and A. Fournier, Fast torsional waves and strong magnetic field within the Earth’s core. Nature, 465, 74–77, 2010.
Gross, R. S., I. Fukumori, and D. Menemenlis, Atmospheric and oceanic excitation of the Earth’s wobbles during 1980–2000. J. Geophys. Res., 108, B8, 2370, 2003.
Gross, R. S., The excitation of the Chandler wobble, Geophys. Res. Lett., 27, 2329– 2332, 2000.
Guinot, B. , The Chandlerian wobble from 1900 to 1970, Astron. Astrophys.1, 9, 207-214, 1972.
Guo, J. Y., H. Greiner-Mai, L. Ballani, H. Jochmann, and C. K. Shum, On the double-peak spectrum of the Chandler wobble, J. Geod., 78, 654–659, 2005.
Jin, S.G., D. P. Chambers and B. D. Tapley, Hydrological and oceanic effects on polar motion from GRACE and models. J. Geophys. Res., 115, B02403, 2010.
Lambeck, K., The Earth''s variable rotation. Cambridge University Press. 1980.
Li, Z. and M. Feissel, Determination of the Earth rotation parameters from optical astrometry observations, 1962.0–1982.0. Bulletin Ge´ odesique 60: 15–28, 1986.
Malkin, Z. and N. Miller, Chandler wobble: two more large phase jumps revealed. Earth Planets Space, 62, 943–947, 2010.
Markowitz, W., Latitude and longitude, and the secular motion of the pole. In: Runcorn SK (ed.) Methods and Techniques in Geophysics, pp. 325–361. New York: Interscience Publishers, 1960.
Moritz, H., and I. I. Mueller, Earth Rotation: Theory and Observation, Ungar, New York, 1987.
Morlet, J., G. Arehs, I. Fourgeau, and D. Giard, Wave propagation and Sampling theory, Geophysics, 47 203, 1982.
Mound, J. E. and B. A. Buffett, Interannual oscillations in length of day: Implications for the structure of the mantle and core, J. geophys. Res., 108, 2334, 2003.
Munk, W. H. and G. J. MacDonald, The Rotation of the Earth. Cambridge University Press, New York., 1960.
Ron, C. and J. Vondrák, On the celestial pole offsets from optical astrometry in 1899–1992. In: N. Capitaine (ed.) Journées 2000 Systèmes de référence spatio-temporels, Observatoire de Paris, 201–202, 2001.
Runcorn, S. K., G. A. Wilkins, E. Groten, H. Lenhardt, J. Campbell, R. Hide, B. F. Chao, A. Souriau, J. Hinderer, H. Legros, J. -L. le Mouel and M. Feissel, The excitation of the Chandler wobble. Surveys in Geophysics 9, 419-449, 1988.
Schuh, H., S. Nagel and T. Seitz, Linear drift and periodic variations observed in long time series of polar motion. J. Geod, 74, 701-710, 2001.
Scrutton, C. T., Periodic growth features in fossil organisms and the length of the day and month. In: P. Brosche and J. Sündermann, Editors, Tidal Friction and the Earth''s Rotation, Springer, Berlin, 154–196, 1978.
Spencer, J. H., The rotation of the Earth and the secular acceleration of the Sun, Moon, and planets. Monthly Notices of the Royal Astronomical Society 99: 541–558, 1939.
Vondrak, J. and C. Ron, The Great Chandler Wobble Change in 1923-1940 Re-Visited, Cahiers du Centre Europe´en de Ge´dynamique et de Se´ ismologie, 24, 39-42, 2005.
Vondrák, J., C. Ron, and V. Štefka, Earth Orientation Parameters Based on EOC‐4, Acta Geodyn. Geomater., Vol. 7, No. 3 (159), 245–251, 2010
Vondrák, J., Pešek, I., Ron, C., and Čepek, A., Earth orientation parameters 1899.7–1992.0 in the ICRS based on the HIPPARCOS reference frame. Publ. Astron. Inst. Acad. Sci. Czech R. 87, 1–56, 1998.
Vondrák, J., Ron, C., and Pešek, I., Survey of observational techniques and Hipparcos reanalysis. In: S. Dick, D.D. McCarthy, and B. Luzum (eds.) Polar motion: Historical and Scientific Problems, Proc. IAU Coll. 178, ASP Conf. Series 208, 239–250, 2000.
Wilson, C. R. and J. Chen, Discrete polar motion equations for high frequencies. J. Geod, 70, 581–585, 1996.
Wilson, C. R., Discrete polar motion equations. Geophys. J. R. Astron. Soc., 80, 551-554, 1985.
Zheng, D. W., X. L. Ding, Y. H. Zhou and Y. Q. Chen, Earth rotation and ENSO events: Combined excitation of interannual LOD variations by multiscale atmospheric oscillations, Global Planet. Change 36, 89–97, 2003.
Zhou, Y. H., D. W. Zheng, X. H. Liao, Wavelet analysis of interannual LOD, AAM, and ENSO: 1997–98 El Nino and 1998–99 La Nina signals. J Geod 75(2–3):164–168, 2001.
閻昊明, 海洋在地球自轉和重力場變化中的作用, 博士學位論文, 中國科學院測量與地球物理研究所, 2005.