跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許博任
Po-Jen Hsu
論文名稱: 以乾式蝕刻法於柔性聚亞醯胺基板製備微通孔及銅電鍍填充應用之研究
Preparation of Micro Through Holes and Copper Electroplating Filled Application on Flexible Polyimide Substrates by Dry Etching
指導教授: 李勝偉
Sheng-Wei Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 72
中文關鍵詞: 電漿蝕刻聚亞醯胺微通孔
外文關鍵詞: Plasma etching, polyimide, micro-through-holes
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用乾式電漿蝕刻法於聚亞醯胺(PI)基板進行微通孔加工,預期
    藉由電漿蝕刻之優異特性,並透過調控射頻功率(RF Power)、下電極功率與腔體工作壓力等關鍵參數,製備直徑小於30 μm 且蝕刻錐角(Taper angle)趨近0˚之圓形通孔,進一步以電鍍填銅應用演示蝕刻完整性,最終計算通孔蝕刻製程之製程能力指標(Cpk),評估本製程穩定性與符合規格程度。
    結果顯示,厚度25 μm 之PI 基板可於RF Power 600 W、LF Power 300W、腔體壓力8 Pa 及氧氣流量70 sccm 下蝕刻15 min.後成功穿孔,孔洞直徑約25 μm;其Taper angle 約2.6˚,最佳化參數後將腔體壓力調整至6 Pa,可於厚度50 μm 之PI 基板蝕刻36 min.後成功製備直徑25 μm 與15 μm 通孔,Taper angle 有趨近0˚之表現,其計算後Cpk 值與潛在Cp 值分別為1.164 與1.212,而通孔亦可於電鍍填充銅後保有圖樣完整性。


    The study demonstrates how dry plasma etching is used for micro-through hole processing on polyimide (PI) substrates. It is expected to achieve an etched
    diameter less than 30 μm and an etched taper angle close to 0˚ through by adjusting RF power, lower electrode power and the chamber working pressure.
    Furthermore, to demonstrate the etching integrity by applying electroplated copper after etching. Finally, the process capability index of through-hole process is calculated to evaluate the stability and the degree of conformity of the process.
    The results show that the PI substrate with a thickness of 25 μm can be successfully perforated after etching for 15 min. The hole diameter is about 25μm; it’s taper angle is about 2.6˚. After optimizing the parameters, the PI substrate with a thickness of 50 μm can be etched with a diameter of 25μm and with a thickness 15 μm through-hole, while taper angle is even closer to 0˚. The value of
    Cpk is 1.164, and the through-hole can also be etched successfully and the pattern integrity is maintained after the plating and copper filling.

    摘要 ........................................................................................................................ i Abstract ................................................................................................................. ii 目錄 ...................................................................................................................... iv 圖目錄 ................................................................................................................. vii 表目錄 .................................................................................................................. ix 第一章、 前言 .................................................................................................. 1 第二章、 文獻回顧與實驗原理 ...................................................................... 4 2.1 聚亞醯胺(Polyimide, PI)材料 ............................................................. 4 2.1.1 聚亞醯胺(Polyimide, PI)沿革 ................................................... 4 2.1.2 聚亞醯胺(Polyimide, PI)特色與應用 ...................................... 5 2.2 軟性銅箔基材(Flexible Copper Clad Laminate, FCCL)介紹 ............ 8 2.2.1 三層式PI 銅箔基材 .................................................................. 9 2.2.2 雙層式PI 銅箔基材 .................................................................. 9 2.2.3 塗佈法PI 銅箔基材 ................................................................ 10 2.2.4 壓合法PI 銅箔基材 ................................................................ 10 2.2.5 濺鍍/電鍍法PI 銅箔基材 ....................................................... 11 2.3 微影(Lithography) ............................................................................. 12 2.3.1 曝光設備(Exposure equipment) .............................................. 13 2.3.2 光罩(Mask) .............................................................................. 13 2.3.3 光阻(Photoresist) ..................................................................... 14 2.4 電漿介紹 ............................................................................................ 16 2.4.1 電漿之生成 ............................................................................. 16 2.4.2 電漿蝕刻機制 ......................................................................... 17 2.5 FPC 微孔加工 .................................................................................... 19 2.5.1 機械製程(Mechanical process) ............................................... 20 2.5.2 濕式化學製程(Wet chemical process) .................................... 22 2.5.3 乾式電漿製程(Plasma process) .............................................. 24 2.5.4 雷射製程(Laser process) ......................................................... 27 2.6 製程能力指標(Process Capability Index, Cpk) ................................ 31 第三章、 實驗方法 ........................................................................................ 33 3.1 實驗流程 ............................................................................................ 33 3.1.1 光罩設計 ................................................................................. 34 3.1.2 光阻塗覆 ................................................................................. 35 3.1.3 軟烤(Soft bake) ....................................................................... 36 3.1.4 曝光 ......................................................................................... 36 3.1.5 顯影 ......................................................................................... 37 3.1.6 銅蝕刻開窗 ............................................................................. 37 3.1.7 電漿蝕刻 ................................................................................. 39 3.1.8 電鍍銅 ..................................................................................... 40 3.2 分析與實驗設備 ................................................................................ 41 3.2.1 感應耦合電漿(Inductively Coupled Plasma)蝕刻機 ............. 41 3.2.2 旋轉塗佈機(Spin coater) ........................................................ 42 3.2.3 掃描式電子顯微鏡(Scanning electron microscope) .............. 43 第四章、 結果與討論 .................................................................................... 44 4.1 腔體壓力於側壁準直性影響 ............................................................ 44 4.2 射頻功率與下電極功率影響 ............................................................ 45 4.3 柔性PI 基板微通孔 .......................................................................... 46 4.3.1 PI 厚度25 μm 之微通孔 ........................................................ 46 4.3.2 PI 厚度50 μm 之微通孔 ........................................................ 47 4.4 微通孔電鍍填銅 ................................................................................ 49 4.5 通孔試片Cpk 值 ............................................................................... 50 4.6 均勻性測試 ........................................................................................ 52 第五章、 結論 ................................................................................................ 53 第六章、 參考文獻 ........................................................................................ 54

    [1] M. L. Hammock, A. Chorros, B. C. Tee, et al., “25th anniversary article: The
    evolution of electronic skin (e-skin): a brief history, design considerations and
    recent progress”, Adv. Materials, Vol. 25, Issue 42, pp.5997-6037, 2013.
    [2] J. A. Rogers, T. Someya, Y. Huang. Materials and mechanics for stretchable
    electronics. Science, 327(5973): 1603, 2010.
    [3] T. Someya, Stretchable electronics, Weinheim: Wiley-VCH, 2013.
    [4] D. Kim and Y. R. Shen, “Study of wet treatment of polyimide by sumfrequency
    vibrational spectroscopy”, Appl. Phys. Lett., Vol. 74, pp.3314-
    3316, 1999.
    [5] M. H. Li, J. Wu, and Y. B. Gianchandani, “High performance scanning
    thermal probe using a low temperature polyimide-based micromachining
    process”, in Proc. IEEE Int. Conf. Micro Electro Mechanical Systems
    (MEMS’00), pp. 763-768, Miyazaki, Japan, Jan. 2000.
    [6] G. Stemme, “A monolithic gas flow sensor with polyimide as thermal
    insulator”, IEEE Trans. on Electron Devices, Vol. 33, p.1470-1474, 1986.
    [7] G. Stemme, “A CMOS integrated silicon gas flow sensor with pulsemodulated
    output”, Paper presented at the Fourth International Conference
    on Solid-State Sensors and Actuators, Transducers '87, pp. 364-367, Tokyo,
    Japan, Jun. 2-5, 1987.
    [8] J. S. Han, Z. Y. Tan, K. Sato, and M. Shikida, “Three dimensional
    interconnect technology on a flexible polyimide film”, Journal of
    Micromechanics and Microengineering, Vol. 14, pp. 38-48, Aug. 2003.
    [9] F. Jiang, G. B. Lee, Y. C. Tai and C. M. Ho, “A flexible micromachine-based
    shear-stress sensor array and its application to separation-point detection”,
    Sensors and Actuators, Vol. 79, pp. 194-203, 2000.
    [10] J. Engel, J. Chen and C. Liu, “Development of a multi-modal, flexible tactile
    sensing skin using polymer micromachining”, Transducers’03, The 12th
    international conference on solid state sensors, actuators and microsystems,
    pp. 1027-1030, Boston, United States, June 8-12, 2003.
    [11] V. J. Lumelsky, M. S. Shur and S. Wagner “Sensitive Skin”, IEEE Sensors
    Journal, Vol. 1, No. 1, pp. 41-51, June 2001.
    [12] Q. F. Du, T. Chen, J. G. Liu and X. Y. Zeng, “Surface microstructure and
    chemistry of polyimide by single pulse ablation of picosecond laser”, Applied
    Surface Science, pp. 434, 588-595, 2018.
    [13] M. Ohnishi, H. Shikata, M. Sakakura, Y. Shimotsuma, K. Miura and K. Hirao,
    “Micro-hole processing of polyimide film by ultra-short laser pulses and its
    applications”, Applied Physics A, Vol. 98, pp.123–127, 2010.
    [14] J. S. Han, Z. Y. Tan, K. Sato and M. Shikida, “Polyimide Film
    Micromachining by Wet-Etching Technology”, IEEJ Transactions on Sensors
    and Micromachines, Vol. 125, No. 1, pp. 27-36, 2005.
    [15] U. Buder, J. P. vonKlitzing and E. Obermeier, “Reactive ion etching for bulk
    structuring of polyimide”, Sensors and actuators A: PHYSICAL, 2006.
    [16] B. Mimoun, H. T. M. Pham, H. Vincent and D. Ronald, “Residue-free plasma
    etching of polyimide coatings for small pitch vias with improved step
    coverage”, Journal of Vacuum Science and Technology B, Mar. 2013.
    [17] M. Zawierta and M. Martyniuk et al., “Control of sidewall profile in dry
    plasma etching of polyimide”, Journal of Microelectromechanical Systems,
    Jun. 2017.
    [18] W. M. Edwards and I. M. Robinson, British Pat. 570,858; U.S. Pat. 2,710,853,
    1955.
    [19] 林金雀,聚醯亞胺薄膜全球市場及應用狀況,化工資訊月刊,頁58-62,2000。
    [20] 顏慶山,全芳香族聚醯亞胺的加工與應用,高分子工業,頁77,73-79,
    1998。
    [21] 金進興,聚醯亞胺在IC 元件之應用,工業材料,144 期,頁118-125,
    1996。
    [22] 金進興,高密度軟性基板材料與應用,工業材料,175 期,2001。
    [23] M. K. Ghosh, K. L. Mittal, “Polyimide Fundamentals and Application” New
    York: Marcel Dekker, 1996.
    [24] 沼倉研史,高密度軟性電路板入門,林振華/林振富編譯,全華科技圖書,
    頁2-13, 2-17,2004。
    [25] 張靖霖,軟板製程技術與應用全覽,亞洲智識,2004。
    [26] 金進興,先進電子與面板構裝技術特刊,工業材料,214 期,頁96,
    2004。
    [27] 張麗敏,曾詩存,高精密塗佈技術之極致應用-可撓式銅箔基板,工業材
    料,219 期,頁118,2005。
    [28] El. Kareh, Fundamental of Semiconductor Processing Technologies, Springer
    Science, 1995.
    [29] S. Wolf, Silicon Processing for the VLSI Era, Ch.12, Lattice Press, 1986.
    [30] B. J. Grenon, C. Peters, K. Battacharyya and W. Volk, “Formation and
    Detection of Sub-pellicle Defects by Exposure to DUV System Illumination”,
    Proceedings of SPIE, Vol. 3873, 1999.
    [31] S. Wolf, Silicon Processing for the VLSI Era, Ch.15, Lattice Press, 1986.
    [32] 莊達人,VLSI 製造技術,高立圖書,頁235-237,1998。
    [33] W. Kern and J. L. Vossen, Thin Film Process Part II, Academic Press, Dec.
    2012.
    [34] Norman G. Einspruch, VLSI Electronics Microstructure Science, Vol. 3,
    Academic Press, 1982.
    [35] P. J. Revell and G. F. Goldspink, “A review of reactive ion beam etching for
    production”, Vacuum, Vol. 34, pp. 455, 1984.
    [36] T. T. Cao, U. Male and D. S. Huh, “Fabrication of pore-selective carboxyl
    group functionalized polyimide honeycomb-patterned porous films using
    KOH humidity”, Polymer, Vol. 153, pp. 86-94, 2018.
    [37] T. Shibata, S. Yukizono, T. Kawashima, M. Nagai, T. Kubota and M. Mita,
    “Modified imprinting process using hollow microneedle array for forming
    through holes in polymers”, Journal of Microelectronic Engineering, Vol. 88,
    Issue 8, pp. 2121-2125, Aug. 2011.
    [38] J. S. Judge, “Etching for Pattern Definition”, Electrochemical Society, pp.19,
    1976.
    [39] 陳俊宇,以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究,國立中
    央大學,碩士論文,2020。
    [40] J. Shivani, A. Savov, S. Salman and D. Ronald, “Investigation of “fur-like”
    residues post dry etching of polyimide using aluminum hard etch mask”,
    Materials Science in Semiconductor Processing, Vol. 75, pp. 130-135, Mar.
    2018.
    [41] W. Q. Zhao and L. Z. Wang, “Microdrilling of Through-Holes in Flexible
    Printed Circuits Using Picosecond Ultrashort Pulse Laser”, Article from
    Polymers, 10, pp. 1390, 2018.
    [42] C. H. Yen, C. C. Lee, K. H. Lo, Y. R. Shiue and S. H. Li, “A Rectifying
    Acceptance Sampling Plan Based on the Process Capability Index”, Article
    from mathematics, Jan. 2020.
    [43] Dale H. Besterfield,Quality Control 品質管制,張志平、紀勝財編譯,東
    華書局,第七版,頁228-231,2004。
    [44] 張振賢、朱若梅,單邊截斷製程能力指標的研究,計量管理期刊,4:1,
    頁23-38,2007。
    [45] Wayne M. Moreau, Semiconductor Lithography: Principles, Practices, and
    Materials, Plenum Press: New York and London, 1988.
    [46] McGill, Nano tools, Micro Fab, Baseline Processes S1813 Spin Coating, from
    http://mnm.physics.mcgill.ca/content/s1813-spin-coating.
    [47] R. W. Jeffery, Circuit Manufacture, pp.7, Oct. 1969.
    [48] 九介企業股份有限公司, 桌上型伺服旋轉塗佈機系列, 取自
    http://www.everisland.com/index.php?route=product/product&product_id=
    95。
    [49] D. J. Elliott, Integrated Circuit Fabrication Technology, Plenum Press, 1988.

    QR CODE
    :::