| 研究生: |
張煜偉 Yu-wei Chang |
|---|---|
| 論文名稱: |
多重路徑環境下之自動調變辨認演算法設計 Automatic Modulation Classification Algorithm Design Under Multi-path Environment |
| 指導教授: |
陳永芳
Yung-Fang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 自動調變辨認 、最佳化步進值 、多模數演算法 |
| 外文關鍵詞: | Automatic Modulation Classification, Optimal Step-size, Multi-modulus Algorithm |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多重路徑下作調變辨認的研究已經發展了一段時間,大部分主要的系統架構為藉由盲等化器(Blind Equalizer)將信號還原之後,再經由樣式辨認(Pattern Recognition)的方法做出調變種類的判斷。而盲等化器的步進值(step-size or adaptive coefficients)設定是一個決定等化之後還原的信號好壞的因素之一,進而影響調變辨認的正確率。為了提高等化器的效率,選擇一個能兼顧收斂速度與效果的步進值是必要的。但適當的步進值會因為不同的傳輸環境而改變。本論文利用代數方法推出下一次迭代所需要的最佳步進值,避開推導步進值範圍的複雜程序,使用最佳的步進值的等化器其收斂速度也比傳統固定步進值的等化器佳。也讓等化器可以自動適應不同環境變化,解決了通道環境改變之後需要手動重新調整步進值的問題,達到完全「自動」調變辨認的功能。
Automatic modulation classification (AMC) has been developed for a long time. In the presence of multi-path, multi-modulus algorithm, a blind equalization algorithm, is widely used to resolve the multi-path inter symbol interference (ISI). A good blind equalizing ability will result in a good AMC performance. But to my best knowledge, there is few papers mentioning how to choose the suitable step-size automatically to improve the performance of AMC.
Optimal step-size multi-modulus algorithm (OS-MMA), which gives a solution to choose the step-size, is derived and applied to automatic modulation classification (AMC) in this paper. The probability of correct classification of AMC with OS-MMA is compared with that of AMC with conventional MMA. And the simulation result shows that AMC with OS-MMA is superior to AMC with conventional MMA.
[1] Y. Sato, “A method of self-recovering equalization for multilevel amplitude modulation systems,” IEEE Trans. Commun., vol. COM-23, no. 6, pp. 679-682, Jun. 1975.
[2] P. A. Regalia, “A finite-interval constant modulus algorithm,” in Proc. ICASSP-2002, vol. III, Orlando, FL, May 13-17, 2002, pp. 2285-2288.
[3] Wei Wen, and Mendel J. M., “Maximum-likelihood classification for digital amplitude-phase modulations”, IEEE Trans. Commun.. Feb. 2000, Vol. 48, pp. 189-193.
[4] K. Assaleh, K. Farrell, and R. J. Mammone, “A new method of modulation classification for digitally modulated signals,” in Proc. MILCOM, vol. 2, San Diego, CA, 1992, pp. 712-716.
[5] E. E. Azzouz and A. K. Nandi, Automatic modulation recognition of communication signals. Norwell, MA: Kluwer, 1996.
[6] A. Polydoros and K. Kim, “On the detection and classification of quadrature digital modulation in broad-band noise,” IEEE Trans. Commun., vol. 38, pp. 1199-1211, Aug. 1990.
[7] S. Soliman and S.-Z. Hsue, “Signal classification using statistical moments,” IEEE Trans. Commun., vol. 40, pp. 908-916, May 1992.
[8] A. Swami and B. M. Sadler, “Hierarchical digital modulation classification using cumulants,” IEEE Trans. Commun., vol. 48, no. 3, pp. 416-429, 2000.
[9] Dobre, O.A., Bar-Ness, Y., and Wei Su, “Robust QAM modulation classification algorithm using cyclic cumulants,” Wireless Communications and Networking Conference ''04 (WCNC 2004), vol. 2, pp. 745-748, Mar. 2004.
[10] D.N. Godard, “Self-recovering equalization and carrier tracking in two dimensional data communication systems,” IEEE Trans. Commun., VOL 60, pp 275-296,Feb 1981
[11] P. A. Regalia, “A finite-interval constant modulus algorithm,” in Proc. ICASSP-2002, vol. III, Orlando, FL, May 13-17, 2002, pp. 2285-2288.
[12] V. Zarzoso and P. Comon, “Blind channel equalization with algebraic optimal step size,” in Proceedings EUSIPCO-2005, XIII European Signal Processing Conference, Antalya, Turkey, September 4-8, 2005.
[13] Luokun Liu and Jiadong Xu, “A novel modulation classification method based on high order cumulants,” Networking and Mobile Computing, 2006. WiCOM 2006.International Conference on Wireless Communicat, 22-24 Sept. 2006.
[14] A. Ebrahimzadeh and G. Ardeshir, “A new signal type classifier for fading environments,”